Click here to close now.




















Welcome!

Related Topics: Microservices Expo, Microsoft Cloud, Open Source Cloud

Microservices Expo: Article

Making Sense of Large and Growing Data Volumes

MapReduce won’t overtake the enterprise data warehouse industry anytime soon

Is MapReduce the Holy Grail answer to the pressing problem of processing, analyzing and making sense of large and growing data volumes? Certainly it has potential in this arena, but there is a distressing gap between the amount of hype this technology - and its spinoffs - has received and the number of professionals who actually know how to integrate and make best use of it.

Industry watchers say it's just a matter of time before MapReduce sweeps through the enterprise data warehouse (EDW) market the same way open source technologies like Linux have done. In fact, in a recent blog post, Forrester's James Kobielus proclaimed that most EDW vendors will incorporate support for MapReduce's open source cousin Hadoop into the heart of their architectures to enable open, standards-based data analytics on massive amounts of data.

So, no more databases, just MapReduce? I'm not so sure. But don't misunderstand. It's not that MapReduce isn't an effective way to analyze data in some cases. The big names in Internet business are all using it - Facebook, Google, Amazon, eBay et al - so it must be good, right? But it's worth taking a more measured view based both on the technical and the practical business merits. I believe that the two technologies are not so mutually exclusive; that they will work hand-in-hand and, in some cases, MapReduce will be integrated into the relational database (RDBMS).

Google certainly has proven that MapReduce excels at making sense out of the exabytes of unstructured data on the web, which it should, given that MapReduce was designed from the outset for manipulating very large data sets. MapReduce in this sense provides a way to put structure around unstructured data. We humans prefer structure; it's in our DNA. Without structure, we have no real way of adding value to the data. Unstructured data analytics is something of an oxymoron for a pattern-seeking hominid.

MapReduce helps us put structure around the unstructured so we can then make sense of it. It creates an environment wherein a data analyst can write two simple functions, a "mapper" and a "reducer," to perform the actual data manipulation, returning a result that is at once both an analysis of the data it has just mapped and summarized, as well as the structure for further analysis that will help provide insight into the data. Whether that further analysis is done in a MapReduce environment might be the more appropriate question.

From an infrastructure standpoint, MapReduce excels where performance and scalability are challenges. Applications written using the MapReduce framework are automatically parallelized, making it well suited to a large infrastructure of connected machines. As it scales applications across lots of servers made up of lots of nodes, the MapReduce framework also provides built-in query fault tolerance so that whatever hardware component might fail, a query would be completed by another machine. Further, MapReduce and its open source brethren can perform functions not possible in standard SQL (click-stream sessionization, nPath, graph production of potentially unbounded length in SQL).

What's not to love? At a basic level I believe the MapReduce framework is an inefficient way of analyzing data for the vast majority of businesses. The aforementioned capabilities of MapReduce are all well and good, provided you have a Google-like business replete with legions of programmers and vast amounts of server and memory capacity. Viewed from this perspective, it makes perfect sense that Google developed and used MapReduce: because it could. It had a huge and growing resource in its farms of custom-made servers, as well as armies of programmers constantly looking for new ways to take advantage of that seemingly infinite hardware (and the data collected on it), to do cool new things.

Similarly, the other high-profile adopters and advocates are also IT-savvy, IT-heavy companies and, like Google, have the means and ongoing incentive to get a MapReduce framework tailored to their particular needs and reap the benefits. Would a mid-size firm know how? It seems doubtful. While it has claimed that MapReduce is easy to use, even for programmers without experience with distributed systems, I know from field experience with customers that it does, in fact, take some pretty experienced folks to make best use of it.

Projects like Hive, Google Sawzall, Yahoo Pig and companies like Cloudera all, in essence, attempt to make the MapReduce paradigm easier for lesser experts to use and, in fact, make it behave for the end user more like a parallel database. But this raises the question: Why? It seems to be a bit of re-inventing the wheel. IT-heavy is not how most businesses operate today, especially in these economic times. The dot-com bubble is long over. Hardware budgets are limited and few companies relish the idea of hiring teams of programming experts to maintain even a valuable IT asset such as their data warehouse. They'd rather buy an off-the-shelf tool designed from the ground up to do high-speed data analytics.

Like MapReduce, commercially available massively parallel processing databases specifically built for rapid, high volume data analytics will provide immense data scale and query fault tolerance. They also have a proven track record of customer deployments and deliver equal if not better performance on Big Data problems. Perhaps as important, today's next-generation MPP analytic databases give businesses the flexibility to draw on a deep pool of IT labor skilled in established conventions such as SQL.

As mentioned earlier, unstructured data seems like a natural for MapReduce analysis. A rising tide of chatter is focused on the increasing problem - and importance - of unstructured data. There is more than a bit of truth to this. As the Internet of everything becomes more and more a reality, data is generated everywhere; but our experience to date is that businesses are most interested in data derived from the transactional systems they've wired their businesses on top of, where structure is a given.

Another difficulty faces companies even as MapReduce becomes more integrated into the overall enterprise data analysis strategy. MapReduce is a framework. As the hype and interest have grown, MapReduce solutions are being created by database vendors in entirely non-standard and incompatible ways. This will further limit the likelihood that it will become the centerpiece of an EDW. Business has demonstrated time and again that it prefers open standards and interoperability.

Finally, I believe a move toward a programmer-centric approach to data analysis is both inefficient and contrary to all other prevailing trends of technology use in the enterprise. From the mobile workforce to the rise of social enterprise computing, the momentum is away from hierarchy. I believe this trend is the only way the problem of making Big Data actionable will be effectively addressed. In his classic book on the virtues of open source programming, The Cathedral and the Bazaar, Eric S. Raymond put forth the idea that open source was an effective way to address the complexity and density of information inherent in developing good software code. His proposition, "given enough eyeballs, all bugs are shallow," could easily be restated for Big Data as, "given enough analysts, all trends are apparent." The trick is - and really always has been - to get more people looking at the data. You don't achieve that end by centering your data analytics efforts on a tool largely geared to the skills of technical wizards.

MapReduce-type solutions as they currently exist are most effective when utilized by programmer-led organizations focused on maximizing their growing IT assets. For most businesses seeking the most efficient way to quickly turn their most valuable data into revenue generating insight, MPP databases will likely continue to hold sway, even as MapReduce-based solutions find a supporting role.

More Stories By Roger Gaskell

Roger Gaskell, CTO of Kognitio, has overall responsibility for all product development. He has been instrumental in all generations of the WX and WX2 database products to date, including evolving it from a database application running on proprietary hardware, to a software-only analytical database built on industry-standard blade servers.

Prior to Kognitio, Roger was test and development manager at AB Electronics for five years. During this time his primary responsibility was for the famous BBC Micro Computer and the development and testing of the first mass production of personal computers for IBM.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
One of the hottest areas in cloud right now is DRaaS and related offerings. In his session at 16th Cloud Expo, Dale Levesque, Disaster Recovery Product Manager with Windstream's Cloud and Data Center Marketing team, will discuss the benefits of the cloud model, which far outweigh the traditional approach, and how enterprises need to ensure that their needs are properly being met.
SYS-CON Events announced today that MobiDev, a software development company, will exhibit at the 17th International Cloud Expo®, which will take place November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MobiDev is a software development company with representative offices in Atlanta (US), Sheffield (UK) and Würzburg (Germany); and development centers in Ukraine. Since 2009 it has grown from a small group of passionate engineers and business managers to a full-scale mobi...
Learn how to solve the problem of keeping files in sync between multiple Docker containers. In his session at 16th Cloud Expo, Aaron Brongersma, Senior Infrastructure Engineer at Modulus, discussed using rsync, GlusterFS, EBS and Bit Torrent Sync. He broke down the tools that are needed to help create a seamless user experience. In the end, can we have an environment where we can easily move Docker containers, servers, and volumes without impacting our applications? He shared his results so yo...
Palerra, the cloud security automation company, announced enhanced support for Amazon AWS, allowing IT security and DevOps teams to automate activity and configuration monitoring, anomaly detection, and orchestrated remediation, thereby meeting compliance mandates within complex infrastructure deployments. "Monitoring and threat detection for AWS is a non-trivial task. While Amazon's flexible environment facilitates successful DevOps implementations, it adds another layer, which can become a ...
With SaaS use rampant across organizations, how can IT departments track company data and maintain security? More and more departments are commissioning their own solutions and bypassing IT. A cloud environment is amorphous and powerful, allowing you to set up solutions for all of your user needs: document sharing and collaboration, mobile access, e-mail, even industry-specific applications. In his session at 16th Cloud Expo, Shawn Mills, President and a founder of Green House Data, discussed h...
The Software Defined Data Center (SDDC), which enables organizations to seamlessly run in a hybrid cloud model (public + private cloud), is here to stay. IDC estimates that the software-defined networking market will be valued at $3.7 billion by 2016. Security is a key component and benefit of the SDDC, and offers an opportunity to build security 'from the ground up' and weave it into the environment from day one. In his session at 16th Cloud Expo, Reuven Harrison, CTO and Co-Founder of Tufin,...
There are many considerations when moving applications from on-premise to cloud. It is critical to understand the benefits and also challenges of this migration. A successful migration will result in lower Total Cost of Ownership, yet offer the same or higher level of robustness. In his session at 15th Cloud Expo, Michael Meiner, an Engineering Director at Oracle, Corporation, analyzed a range of cloud offerings (IaaS, PaaS, SaaS) and discussed the benefits/challenges of migrating to each offe...
Chuck Piluso presented a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. Prior to Secure Infrastructure and Services, Mr. Piluso founded North American Telecommunication Corporation, a facilities-based Competitive Local Exchange Carrier licensed by the Public Service Commission in 10 states, serving as the company's chairman and president from 1997 to 2000. Between 1990 and 1997, Mr. Piluso served as chairman & founder of International Te...
Mobile, social, Big Data, and cloud have fundamentally changed the way we live. “Anytime, anywhere” access to data and information is no longer a luxury; it’s a requirement, in both our personal and professional lives. For IT organizations, this means pressure has never been greater to deliver meaningful services to the business and customers.
In their session at 17th Cloud Expo, Hal Schwartz, CEO of Secure Infrastructure & Services (SIAS), and Chuck Paolillo, CTO of Secure Infrastructure & Services (SIAS), provide a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. In his role as CEO of Secure Infrastructure & Services (SIAS), Hal Schwartz provides leadership and direction for the company.
In a recent research, analyst firm IDC found that the average cost of a critical application failure is $500,000 to $1 million per hour and the average total cost of unplanned application downtime is $1.25 billion to $2.5 billion per year for Fortune 1000 companies. In addition to the findings on the cost of the downtime, the research also highlighted best practices for development, testing, application support, infrastructure, and operations teams.
Puppet Labs has announced the next major update to its flagship product: Puppet Enterprise 2015.2. This release includes new features providing DevOps teams with clarity, simplicity and additional management capabilities, including an all-new user interface, an interactive graph for visualizing infrastructure code, a new unified agent and broader infrastructure support.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducte...
Container technology is sending shock waves through the world of cloud computing. Heralded as the 'next big thing,' containers provide software owners a consistent way to package their software and dependencies while infrastructure operators benefit from a standard way to deploy and run them. Containers present new challenges for tracking usage due to their dynamic nature. They can also be deployed to bare metal, virtual machines and various cloud platforms. How do software owners track the usag...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...