Welcome!

Related Topics: Containers Expo Blog, Microservices Expo

Containers Expo Blog: Article

How Data Virtualization Improves Business Agility – Part 2

Accelerate value with a streamlined, iterative approach that evolves easily

Business Agility Requires Multiple Approaches
Agile businesses create business agility through a combination of business decision agility, time-to-solution agility and resource agility.

This article addresses how data virtualization delivers time-to-solution agility. Part 1 addressed business decision agility and Part 3 will address resource agility.

Time-To-Solution Agility = Business Value
When responding to new information needs, rapid time-to-solution is critically important and often results in significant bottom-line benefits.

Proven, time and again across multiple industries, substantial time-to-solution improvements can be seen in the ten case studies described in the recently published Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility.

Consider This Example: If the business wants to enter a new market, it must first financially justify the investment, including any new IT requirements. Thus, only the highest ROI projects are approved and funded. Once the effort is approved, accelerating delivery of the IT solution also accelerates realization of the business benefits and ROI.

Therefore, if incremental revenues from the new market are $2 million per month, then the business will gain an additional $2 million for every month IT can save in time needed to deliver the solution.

Streamlined Approach to Data Integration
Data virtualization is significantly more agile and responsive than traditional data consolidation and ETL-based integration approaches because it uses a highly streamlined architecture and development process to build and deploy data integration solutions.

This approach greatly reduces complexity and reduces or eliminates the need for data replication and data movement. As numerous data virtualization case studies demonstrate, this elegance of design and architecture makes it far easier and faster to develop and deploy data integration solutions using a data virtualization platform. The ultimate result is faster realization of business benefits.

To better understand the difference, let's contrast these methods. In both the traditional data warehouse/ETL approach and data virtualization, understanding the information requirements and reporting schema is the common first step.

Traditional Data Integration Has Many Moving Parts
Using the traditional approach IT then models and implements the data warehouse schema. ETL development follows to create the links between the sources and the warehouse. Finally the ETL scripts are run to populate the warehouse. The metadata, data models/schemas and development tools used within each activity are unique to each activity.

This diverse environment of different metadata, data models/schemas and development tools is not only complex but also results in the need to coordinate and synchronize efforts and objects across them.

Experienced BI and data integration users will readily acknowledge the long development times that result from this complexity, including Forrester Research in its 2011 report Data Virtualization Reaches Critical Mass.

"Extract, transform, and load (ETL) approaches require one or more copies of data staged along the physical integration process flow. Creating, storing, and manipulating these copies can be complex and error prone."

Data Virtualization Has Fewer Moving Parts
Data virtualization uses a more streamlined architecture that simplifies development. Once the information requirements and reporting schema are understood, the next step is to develop the objects (views and data services) used to both model and query the required data.

These virtual equivalents of the warehouse schema and ETL routines and scripts are created within a single view or data service object using a unified data virtualization development environment. This approach leverages the same metadata, data models/schemas and tools.

Not only is it easier to build the data integration layer using data virtualization, but there are also fewer "moving parts," which reduces the need for coordination and synchronization activities. With data virtualization, there is no need to physically migrate data from the sources to a warehouse. The only data that is moved is the data delivered directly from the source to the consumer on-demand. These result sets persist in the data virtualization server's memory for only a short interval.

Avoiding data warehouse loads, reloads and updates further simplifies and streamlines solution deployment and thereby improves time-to-solution agility.

Iterative Development Process Is Better for Business Users
Another way data virtualization improves time-to-solution agility is through support for a fast, iterative development approach. Here, business users and IT collaborate to quickly define the initial solution requirements followed by an iterative "develop, get feedback and refine" process until the solution meets the user need.

Most users prefer this type of development process. Because building views of existing data is simple and fast, IT can provide business users with prospective versions of new data sets in just a few hours. The user doesn't have to wait months for results while IT develops detailed solution requirements. Then business users can react to these data sets and refine their requirements based on the tangible insights. IT can then change the views and show the refined data sets to the business users.

This iterative development approach enables the business and IT to hone in on and deliver the needed information much faster than traditional integration methods.

Even in cases where a data warehouse solution is mandated by specific analytic needs, data virtualization can be used to support rapid prototyping of the solution. The initial solution is built using data virtualization's iterative development approach, with migration to the data warehouse approach once the business is fully satisfied with the information delivered.

In contrast, developing a new information solution using traditional data integration architecture is inherently more complex. Typically, business users must fully and accurately specify their information requirements prior to any development, with little change tolerated. Not only does the development process take longer, but there is a real risk that the resulting solution will not be what the users actually need and want.

Data virtualization offers significant value, and the opportunity to reduce risk and cost, by enabling IT to quickly deliver iterative results that enable users to truly understand what their real information needs are and get a solution that meets those needs.

Ease of Data Virtualization Change Keeps Pace with Business Change
The third way data virtualization improves time-to-solution agility is ease of change. Information needs evolve. So do the associated source systems and consuming applications. Data virtualization allows a more loosely coupled architecture between sources, consumers and the data virtualization objects and middleware that integrate them.

This level of independence makes it significantly easier to extend and adapt existing data virtualization solutions as business requirements or associated source and consumer system implementations change. In fact, changing an existing view, adding a new source or migrating from one source to another is often completed in hours or days, versus weeks or months in the traditional approach.

Conclusion
Data virtualization reduces complexity, data replication and data movement. Business users and IT collaborate to quickly define the initial solution requirements followed by an iterative "develop, get feedback and refine" delivery process. Further independent layers make it significantly easier to extend and adapt existing data virtualization solutions as business requirements or associated source and consumer system implementations change.

These time-to-solution accelerators, as numerous data virtualization case studies demonstrate, make it far easier and faster to develop and deploy data integration solutions using a data virtualization platform than other approaches. The result is faster realization of business benefits.

Editor's Note: Robert Eve is the co-author, along with Judith R. Davis, of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility, the first book published on the topic of data virtualization. This series of three articles on How Data Virtualization Delivers Business Agility includes excerpts from the book.

More Stories By Robert Eve

Robert Eve is the EVP of Marketing at Composite Software, the data virtualization gold standard and co-author of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility. Bob's experience includes executive level roles at leading enterprise software companies such as Mercury Interactive, PeopleSoft, and Oracle. Bob holds a Masters of Science from the Massachusetts Institute of Technology and a Bachelor of Science from the University of California at Berkeley.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addres...
Akana has announced the availability of version 8 of its API Management solution. The Akana Platform provides an end-to-end API Management solution for designing, implementing, securing, managing, monitoring, and publishing APIs. It is available as a SaaS platform, on-premises, and as a hybrid deployment. Version 8 introduces a lot of new functionality, all aimed at offering customers the richest API Management capabilities in a way that is easier than ever for API and app developers to use.
Kubernetes, Docker and containers are changing the world, and how companies are deploying their software and running their infrastructure. With the shift in how applications are built and deployed, new challenges must be solved. In his session at @DevOpsSummit at19th Cloud Expo, Sebastian Scheele, co-founder of Loodse, will discuss the implications of containerized applications/infrastructures and their impact on the enterprise. In a real world example based on Kubernetes, he will show how to ...
Personalization has long been the holy grail of marketing. Simply stated, communicate the most relevant offer to the right person and you will increase sales. To achieve this, you must understand the individual. Consequently, digital marketers developed many ways to gather and leverage customer information to deliver targeted experiences. In his session at @ThingsExpo, Lou Casal, Founder and Principal Consultant at Practicala, discussed how the Internet of Things (IoT) has accelerated our abil...
With so much going on in this space you could be forgiven for thinking you were always working with yesterday’s technologies. So much change, so quickly. What do you do if you have to build a solution from the ground up that is expected to live in the field for at least 5-10 years? This is the challenge we faced when we looked to refresh our existing 10-year-old custom hardware stack to measure the fullness of trash cans and compactors.
SYS-CON Events announced today that Isomorphic Software will exhibit at DevOps Summit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Isomorphic Software provides the SmartClient HTML5/AJAX platform, the most advanced technology for building rich, cutting-edge enterprise web applications for desktop and mobile. SmartClient combines the productivity and performance of traditional desktop software with the simp...
The emerging Internet of Everything creates tremendous new opportunities for customer engagement and business model innovation. However, enterprises must overcome a number of critical challenges to bring these new solutions to market. In his session at @ThingsExpo, Michael Martin, CTO/CIO at nfrastructure, outlined these key challenges and recommended approaches for overcoming them to achieve speed and agility in the design, development and implementation of Internet of Everything solutions wi...
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
I wanted to gather all of my Internet of Things (IOT) blogs into a single blog (that I could later use with my University of San Francisco (USF) Big Data “MBA” course). However as I started to pull these blogs together, I realized that my IOT discussion lacked a vision; it lacked an end point towards which an organization could drive their IOT envisioning, proof of value, app dev, data engineering and data science efforts. And I think that the IOT end point is really quite simple…
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - comp...
Qosmos has announced new milestones in the detection of encrypted traffic and in protocol signature coverage. Qosmos latest software can accurately classify traffic encrypted with SSL/TLS (e.g., Google, Facebook, WhatsApp), P2P traffic (e.g., BitTorrent, MuTorrent, Vuze), and Skype, while preserving the privacy of communication content. These new classification techniques mean that traffic optimization, policy enforcement, and user experience are largely unaffected by encryption. In respect wit...
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.