News Feed Item

Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Markets

NEW YORK, Dec. 24, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Markets

There are many new frontiers in the display industry
Several major trends have been driving technological innovation in the display industry since its early days. These trends include image quality, screen size, portability and form factor. While these trends still remain strong undercurrents, new drivers are being introduced that will play a more prominent role in shaping the industry.

These new drivers will open up new frontiers, both on the technology and the market side. Indeed, they enable displays to both expand their existing markets and to diversify into new spaces. These major drivers that are set to change the display landscape include product differentiation, flexibility, 3D, transparency, system-on-panel, power savings, interconnectivity and screen size, and new front plane
technologies and more.

Major trends in the industry are changing the backplane functional requirements
Critically, these new trends can only be sustained so long as the underlying technology can deliver the required performance demands. This is critical because the new functional needs will stretch many existing solutions beyond their performance limits, suggesting that alternative solutions will be required. One vital piece of technology that largely sets the limits of display industry is the backplane technology. The backplane is responsible for turning the individual pixels ON and OFF. It is composed of thin film transistors, which act as the switches.

The over-arching trends in the industry are also changing the backplane requirements on several fronts. Product differentiation is resulting in multiplicity of lighting/display technologies, with each demanding a different power output and refresh rate from the backplane. Flexibility is opening up room for a new value chain consisting of new material systems. This is because many existing solutions are failing the flexibility tests, but what is the realistic market opportunity for flexible displays and when?

3D and ultra-high resolution displays mandate higher refresh rates, stretching the switching speed requirements past the capability limits of today's dominant technologies, such as amorphous silicon (aSi) TFTs. System-on-panel thinking is requiring ever more processing power to be integrated onto the panel, and therefore the backplane. Reducing power consumption requires improvements in the entire lifecycle of the display, from reducing the thermal budget during the processing all the way to the more efficient energy use during operation. This will affect how thin film transistors are designed, made and operated.

There is no one size-fits-all-solution
Interestingly, there are already many different backplane technologies that are mature and available, or are fast emerging. These include amorphous silicon, nanocrystalline silicon, low-temperature poly-silicon, solution-processed or evaporated organic semiconductor and various metal oxide thin film transistor technologies. Add to this multiplicity of solutions a range of emerging nano-systems (e.g., various nanowires, graphene, carbon nanotubes) and you will find a decision-making nightmare.

This is because each thin film transistor technology offers a different set of characteristics, suitable for different needs. And yet none offers a one-size-fits-all-solution for all needs. This suggests that, at least initially, many different technologies will co-exist, each rising to satisfy a fragment of the emerging spectrum of needs and thus each occupying a different niche. In addition, some of these options are further advanced than others while others hold great promise. Yet bringing it to market will take time and there are unforeseen technical issues to contend with.

This report makes sense of this changing, fragmented space
This report analyzes major drivers that are shaping the display industry. The major trends examined in detail include product differentiation, size and scaling, power savings, prolonged lifetime, 3D, mechanical flexibility, rimless designs, etc.

The report will then assess how these trends create new functional needs on the technology side. It provides an in-depth review of existing and emerging thin film transistor solutions and critically assesses the pros and cons of each. The technologies covered include various forms of silicon thin film transistors (amorphous, nanostructure and polycrystalline), organic semiconductors, various nanostructured semiconductors and metal oxides.

In terms of metal oxides, it assesses the different material systems available (IGZO, HIZO, IZO, ZNO, TZO, ZnO, etc) and critically assesses the merits of each. In doing so, it outlines and discusses the leading research frontiers in metal oxides science and engineering, including stability and persistent photoconductivity, processing window, p-doping, etc. The report also discusses various requirements of dielectrics for emerging displays and explores the material options for use as dielectrics on wide-bandgap metal-oxide semiconductors.

The report links material properties of all thin film transistor technologies to device figures-of-merit, including mobility, sub-threshold voltage, threshold voltage, stability, contact resistance, etc. These figures-of-merit are then connected to attributes of backplanes and thereby to the emerging functional needs of the display industry as a whole.

Linking the mega trends with micro level technological details, we are able to map out how the fragmented display backplane technology will look going forward.

In our assessment, we also provide a detailed outline of activities in the OLED display segment, including
-An analysis of announced production capacity
-Number of units sold by manufacturer
-Which backplane technologies are used by which manufacturers
-A timeline of venture/partnerships activities taking place across the world in the OLED space.
-Product development cycle for oxide semiconductors

Who should buy this report?
- Major display manufacturers: This report helps major display manufacturers understand how the drivers and the functional needs of the industry are changing. This report will also help them see which technologies will win in which market segments, and why. It will enable them to ensure that they do not lose out when the landscape alters and when parts (or all) of their existing value chain become disrupted.

-Thin film transistor technology licensors and researchers: It will help them identify how the changing display industry will benefit from which thin film transistor technology; helps them pinpoint key research frontiers and questions and therefore design their research programmes; helps them identify target markets and players for licensing their IP assets; helps them know their competitors, etc

- Material suppliers to all thin film transistor technologies: It will help them understand which thin film transistors (and their associated material system) will win in which markets and why. It will help them devise their strategies by backing the right technologies in the right time frames and for the right markets.

- Equipment suppliers: It will help them understand which new technologies will be required and why. As a result, it will help them see which new equipment systems will be required and why. It helps them therefore plan ahead and form the right partnerships or relationships.

- Circuit designers: It will help them see how oxide thin film transistors require new compensation techniques, why and for which market segments (this determines the required performance specification). This effectively highlights a new area of circuit design for companies.

Analyst access from IDTechEx
All report purchases include includes up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

1.1. A changing landscape
1.2. The backplane technology must be able to sustain the growth
1.3. Where do oxides sit in the emerging display landscape?
1.4. Development cycle and product pipeline for various display applications using oxide TFTs
1.5. OLED development timeline
1.6. How could the value chain look?
2.1. Zinc Oxide is the n-type oxide of choice
2.2. Why amorphous oxides give both high mobility and high spatial uniformity?
2.3. Multi-component oxides are leading the way
2.4. Why go multi-component?
2.5. Multi-component oxides give leverage in device design and manufacture
2.6. p-doping and complementary logic are often not possible
2.7. Some p-type oxide semiconductors are emerging
2.8. Transparent Electronics?
2.9. Transparency is not as good as advertised- why?
2.10. Photocurrent persists for long times, even in the dark
2.11. Manufacture
2.11.1. Sputtering
2.11.2. Printing
2.12. Target Markets
3.1. Dielectric requirements for transistors
3.2. The dielectric material set- assessing suitability for traditional and metal-oxide electronics
3.3. Trade-off between bandgap and dielectric constant
3.4. Dielectrics- the wide bandgap limits the choice of dielectrics- AlOx and SiOx are promising
3.5. Which dielectric material gives highest stability in ZnO-based electronics?
3.6. Hybrid structures for metal oxides
3.7. Dielectric purity is critical for metal oxides
3.8. Passivation is critical in transistors but not straightforward
3.9. Metal oxide dielectrics are used to encapsulate moisture-sensitive OPVs and OLEDs devices
3.10. Manufacturing techniques
3.10.1. Explaining different techniques
3.10.2. Comparing Manufacturing Techniques
4.1. Material set
4.2. Thin Film Transparent Conductors
4.3. Applications for Thin Film Transparent Conductors
4.4. Non-Thin Film Transparent Conductors
4.5. Why is ITO replacement being targeted?
4.5.1. Cost
4.5.2. Supply concern
4.5.3. Mechanical Flexibility
4.6. Will ITO alternatives deliver value? How and where
5.1. Active vs. Passive Matrix
5.2. Display Technologies
5.3. LCD displays vs OLED displays
5.4. TFT Technology
5.4.1. Basic TFT configurations
5.4.2. TFT Figures of Merit
5.4.3. TFT Technologies
6.1. 3D
6.2. Size and Scale
6.3. Flexibility
6.4. Product differentiation
6.5. Power consumption
6.6. Lifetime and consumer behaviour
6.7. Transparency
6.8. Rimless displays
6.9. Increasing processing power
7.1. How oxides deliver value across the existing market driver?
7.2. Which backplane technology occupies which market position in the emerging landscape?
7.3. Product development timeline using oxide thin film transistors
7.4. Joint venture, partnership and collaboration in the OLED space- a timeline
7.5. OLED display products are rapidly multiplying
7.6. OLED- a rapidly growing market
7.7. Opportunities for oxides in the OLED display industry- Data
7.8. Will oxides also be used in the LCD industry?
7.9. Sharp and HTC announces a IGZO product
7.10. Value Chain Mapping
8.1. Technology Licensors
8.1.1. Amorphyx
8.1.2. AUO
8.1.3. Canon Kabushiki Kaisha
8.1.4. Cbrite
8.1.5. DuPont
8.1.6. Eastman Kodak
8.1.7. Fujifilm Corporation
8.1.8. Hewlett Packard
8.1.9. JX Nippon Mining
8.1.10. LG
8.1.11. Samsung Institute of Advanced Technology
8.1.12. Semiconductor Energy Laboratory
8.1.13. Sony
8.1.14. Tokyo Institute of Technology
8.1.15. University of Oregon
8.2. Circuits/Drivers
8.2.1. Dialog Semiconductors
8.2.2. IGNIS Innovation
8.2.3. Lucid Display Technology
8.2.4. Magnachip Semiconductor Ltd
8.3. Manufacturers
8.3.1. AUO
8.3.2. BOE Display
8.3.3. Chimei Innolux
8.3.4. Japan Display Inc
8.3.5. LG
8.3.6. Panasonic
8.3.7. Prime View International
8.3.8. Samsung Electronics
8.3.9. Sharp
8.4. Equipment Providers
8.4.1. AimCore
8.4.2. AJA International, Inc
8.4.3. Applied Materials
8.4.4. Angstrom Engineering
8.4.5. Cambridge Nanotech
8.4.6. ThinFilms Inc
8.4.7. Vacuum Process Technology
8.4.8. Veeco Instruments
8.5. Sputtering Targets Providers
8.5.1. Hitachi Metals
8.5.2. Idemitsu Kosan
8.5.3. JX Nippon Mining & Metals Corporation
8.5.4. Samsung Corning Precision Glass
8.5.5. ULVAC Corporation

To order this report:
Electronic_Component_and_Semiconductor Industry:
Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Markets

Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
Established in 1998, Calsoft is a leading software product engineering Services Company specializing in Storage, Networking, Virtualization and Cloud business verticals. Calsoft provides End-to-End Product Development, Quality Assurance Sustenance, Solution Engineering and Professional Services expertise to assist customers in achieving their product development and business goals. The company's deep domain knowledge of Storage, Virtualization, Networking and Cloud verticals helps in delivering ...
SYS-CON Events announced today that Cloudbric, a leading website security provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Cloudbric is an elite full service website protection solution specifically designed for IT novices, entrepreneurs, and small and medium businesses. First launched in 2015, Cloudbric is based on the enterprise level Web Application Firewall by Penta Security Sys...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
In the next five to ten years, millions, if not billions of things will become smarter. This smartness goes beyond connected things in our homes like the fridge, thermostat and fancy lighting, and into heavily regulated industries including aerospace, pharmaceutical/medical devices and energy. “Smartness” will embed itself within individual products that are part of our daily lives. We will engage with smart products - learning from them, informing them, and communicating with them. Smart produc...
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
Extreme Computing is the ability to leverage highly performant infrastructure and software to accelerate Big Data, machine learning, HPC, and Enterprise applications. High IOPS Storage, low-latency networks, in-memory databases, GPUs and other parallel accelerators are being used to achieve faster results and help businesses make better decisions. In his session at 18th Cloud Expo, Michael O'Neill, Strategic Business Development at NVIDIA, focused on some of the unique ways extreme computing is...
SYS-CON Events announced today that Coalfire will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Coalfire is the trusted leader in cybersecurity risk management and compliance services. Coalfire integrates advisory and technical assessments and recommendations to the corporate directors, executives, boards, and IT organizations for global brands and organizations in the technology, cloud, health...
In his session at 19th Cloud Expo, Claude Remillard, Principal Program Manager in Developer Division at Microsoft, will contrast how his team used config as code and immutable patterns for continuous delivery of microservices and apps to the cloud. He will show the immutable patterns helps developers do away with most of the complexity of config as code-enabling scenarios such as rollback, zero downtime upgrades with far greater simplicity. He will also have live demos of building immutable pipe...
SYS-CON Events announced today that Transparent Cloud Computing (T-Cloud) Consortium will exhibit at the 19th International Cloud Expo®, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The Transparent Cloud Computing Consortium (T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data proces...
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
The Internet of Things (IoT), in all its myriad manifestations, has great potential. Much of that potential comes from the evolving data management and analytic (DMA) technologies and processes that allow us to gain insight from all of the IoT data that can be generated and gathered. This potential may never be met as those data sets are tied to specific industry verticals and single markets, with no clear way to use IoT data and sensor analytics to fulfill the hype being given the IoT today.
In his general session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed cloud as a ‘better data center’ and how it adds new capacity (faster) and improves application availability (redundancy). The cloud is a ‘Dynamic Tool for Dynamic Apps’ and resource allocation is an integral part of your application architecture, so use only the resources you need and allocate /de-allocate resources on the fly.
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...