Welcome!

News Feed Item

Barrier Films for Flexible Electronics: Needs Players & Opportunities 2012-2022

NEW YORK, Dec. 31, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Barrier Films for Flexible Electronics: Needs Players & Opportunities 2012-2022
http://www.reportlinker.com/p0191581/Barrier-Films-for-Flexible-Electronics-Needs-Players--Opportunities-2012-2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Glass_Manufacturing

Although it is possible to print many different kinds of electronic displays, in order for them to be commercially successful, they must be robust enough to survive for the necessary time and conditions required of the display. This condition has been a limitation of many printable electronic displays. Beyond printability and functionality, one of the most important requirements is encapsulation. Many of the materials used in printed electronic displays are chemically sensitive, and will react with many environmental components.

This highly targeted report from IDTechEx technology analyst Dr Harry Zervos gives an in-depth review of the issues, as well as forecasts for OLEDs and OPV, in order to understand the influence that the development of flexible barriers will have on the mass deployment and adoption of flexible electronics and photovoltaics.

A large opportunity lies in the development of devices in a flexible form factor, allowing them to be more robust, lightweight and versatile in their use.

However, many of the materials used in OLED displays and organic photovoltaics are sensitive to the environment, limiting their lifetime. These materials can be protected using substrates and barriers such as glass and metal, but this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers can be used, but these offer little protection to oxygen and water, resulting in the devices rapidly degrading.

In order to achieve device lifetimes of tens of thousands of hours, water vapor transmission rates (WVTR) must be 10-6 g/m2/day, and oxygen transmission rates (OTR) must be < 10-3 cm3/m2/day. For Organic Photovoltaics, the required WVTR is not as stringent as OLEDs require but is still very high at a level of 10-5 g/m2/day. These transmission rates are several orders of magnitude smaller than what is possible using any plastic substrate, and they can also be several orders of magnitude smaller than what can be measured using common equipment designed for this purpose. For these (and other) reasons, there has been intense interest in developing transparent barrier materials with much lower permeabilities.

This concise and unique report from IDTechEx gives an in-depth review of the needs, emerging solutions and players. It addresses specific topics such as:
- Companies which are active in the development of high barrier films and their achievements on the field to date.
- Surface smoothness and defects (such as cracks and pinholes) and the effect that these characteristics would have on the barrier behavior of the materials studied.
- Traditional methods of measurement of permeability are reaching the end of their abilities. The MOCON WVTR measurement device, which has been an industry standard, cannot give adequate measurements at the low levels of permeability required for Organic Photovoltaics and OLEDs. Other methods of measurement and equipment developed are being discussed.
- Forecasts for OLEDs and OPV, in order to understand the influence that the development of flexible barriers would have at the mass deployment and adoption of these technologies.

For those developing flexible electronics, seeking materials needs and opportunities, this is a must-read report.

1. SCOPE
2. INTRODUCTION TO ENCAPSULATION
3. SURFACE SMOOTHNESS - DEFECTS
3.1. Important considerations of surface smoothness
3.2. Micro Defects
3.2.1. Crystalline regions
3.2.2. Pinholes
3.2.3. Smoothness / Cracks-Scratches
3.2.4. Nanodefects
4. COMPANIES
4.1. 3M
4.2. Amcor Flexibles Singen GmbH
4.3. CPI
4.4. Fraunhofer - POLO Alliance
4.5. GE
4.6. Tera Barrier
4.7. Vitex
4.8. Other technologies - High barrier adhesives
4.9. Best performing barriers developed to date
5. BARRIER MEASUREMENTS
5.1. The Calcium test
5.2. MOCON
5.3. Illinois Instruments
5.4. Fluorescent Tracers
5.5. Black Spot Analysis
5.6. Tritium Test
5.7. CEA
5.8. 3M
5.9. IMRE
5.10. Mass Spectrocopy - gas permeation (WVTR & OTR potential applications)
6. FORECASTS FOR BARRIER FILMS FOR FLEXIBLE ELECTRONICS 2012-2022
6.1. The potential significance of organic and printed inorganic electronics
6.2. Forecasts for flexible electronics 2012-2022
6.3. Barrier films market size
7. CONCLUSIONS
8. REFERENCES
APPENDIX 1: ATOMIC LAYER DEPOSITION
APPENDIX 2: IDTECHEX PUBLICATIONS AND CONSULTANCY
TABLES
2.1. Water vapor and oxygen transmission rates of various materials
2.2. Requirements of barrier materials
3.1. Oxygen transmission rates of polypropylene with various coatings.4, 7
4.1. Overview of promising high barrier technologies
5.1. Lower detection limits of several barrier performance measurement techniques
6.1. Leading market drivers 2022
6.2. Total market value of flexible vs. rigid electronics 2012-2022
6.3. Barrier layer area forecasts 2012-2022 in square meters
6.4. Barrier layer market forecasts 2012-2022 in US$ billions
FIGURES
1.1. Examples of flexible OLED displays by SONY and AddVision
1.2. Flexible OLED fabricated using IMRE's high barrier substrate and encapsulation technique44
1.3. Flexible Solar Cell developed by Fraunhofer ISE
2.1. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ4
2.2. Scanning electron micrograph image of a barrier film cross section6
3.1. Visual defects of a selection of materials with barrier films highlighted through calcium corrosion test. Optical microscope magnification 10x.44
3.2. SEM pictures of the Atmospheric Plasma Glow Discharge deposited silica-like films on polymer substrates. Left: Film with embedded dust particles . Right: uniform film27
3.3. OTR as a function of defect density, the correlation between defect density and the oxygen transmission rate
3.4. SEM image of a pinhole defect formed from a dust particle32
3.5. Scanning electron microscope image of ITO coated on parylene/polymer film34
3.6. The measurement of OLED's lifetime of SiON/PC/ITO and SiON/parylene/PC/parylene/ITO substrate34
4.1. Calcium test results demonstrating superior WVTR performance
4.2. 3M barrier film development roadmap
4.3. Amcor (formerly Alcan) Packaging flexible barrier based on PET and SiOx47
4.4. DuPont Displays technology pipeline
4.5. Scanning electron micrograph of a thin hybrid polymer coating on SiOx deposited on a flexible PET film 46
4.6. OTR values achieved with different POLO multilayers46
4.7. Schematic of cross section of graded barrier coating and complete barrier film structure1.
4.8. Transparency of GE's UHB film versus wavelength
4.9. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure.3, 8
4.10. Vitex multilayer deposition process8.
4.11. SEM cross section of Vitex Barix material with four dyads.
4.12. Optical transmission of Vitex Barix coating8.
4.13. Edge seal barrier formation by deposition through shadow masks10
4.14. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue10
4.15. Schematic of flexible OLED with hybrid encapsulation31
4.16. Corning flexible glass showcased at SID 2011
4.17. Matchless: AGC's ultra-thin sheet glass may be thin, but it can take the heat
4.18. AGC's ultra-thin sheet glass rolled into a coil
4.19. Area sealing55
4.20. DELO's light curing adhesive solution for electrophoretic displays55
4.21. Performance characteristics of DELO's light-curing materials55
4.22. Specifications on WVTR for different applications, as seen by Vitex Systems36
4.23. 3M specifications on WVTR and OTR for high barrier applications with stringent requirements 14
5.1. 2.25 mm2 area of a 50 nm layer of Ca deposited onto barrier coated PET viewed through the substrate. i. Image after 1632 h of exposure to atmosphere; ii. Image analysis whereby the grey scale of Ca degradation is processed to yiel
5.2. A simple set-up for measuring optical transmission of calcium test cells48
5.3. MOCON's Aquatran™ Model 138
5.4. MOCON's Aquatran™ schematic38
5.5. MOCON's OX-TRAN® Model 2/1039
5.6. Silica induced black spots, letters A & B mark black spots with a centralized black dot (silica particle)32
5.7. Black spot formation and growth mechanisms 32
5.8. General Atomics HTO WVTR testing apparatus40
6.1. Leading market drivers 2022
6.2. Total market value of flexible vs. rigid electronics 2012-2022
6.3. Barrier layer area forecasts 2012-2022 in square meters
6.4. Barrier layer market forecasts 2012-2022 in US$ billions
6.5. Size of opportunity
7.1. The iRex iLiad and the Amazon Kindle rigid e-book readers
7.2. E Ink flexible electrophoretic display and color electrophoretic display by SAMSUNG LCD, demonstrated at SID 2008
7.3. Lithium test sample with thin film encapsulation after 24 hrs in the damp heat test at 85°C/85% relative humidity. B. Similar lithium test sample after 200 hrs in the same damp heat test with optimized barrier structure. [42]


To order this report:
Glass_Manufacturing Industry:
Barrier Films for Flexible Electronics: Needs Players & Opportunities 2012-2022

__________________________
Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of Soli...
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
To manage complex web services with lots of calls to the cloud, many businesses have invested in Application Performance Management (APM) and Network Performance Management (NPM) tools. Together APM and NPM tools are essential aids in improving a business's infrastructure required to support an effective web experience... but they are missing a critical component - Internet visibility.
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" ...
Both SaaS vendors and SaaS buyers are going “all-in” to hyperscale IaaS platforms such as AWS, which is disrupting the SaaS value proposition. Why should the enterprise SaaS consumer pay for the SaaS service if their data is resident in adjacent AWS S3 buckets? If both SaaS sellers and buyers are using the same cloud tools, automation and pay-per-transaction model offered by IaaS platforms, then why not host the “shrink-wrapped” software in the customers’ cloud? Further, serverless computing, cl...
“We're a global managed hosting provider. Our core customer set is a U.S.-based customer that is looking to go global,” explained Adam Rogers, Managing Director at ANEXIA, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
The speed of software changes in growing and large scale rapid-paced DevOps environments presents a challenge for continuous testing. Many organizations struggle to get this right. Practices that work for small scale continuous testing may not be sufficient as the requirements grow. In his session at DevOps Summit, Marc Hornbeek, Sr. Solutions Architect of DevOps continuous test solutions at Spirent Communications, explained the best practices of continuous testing at high scale, which is rele...
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
Hardware virtualization and cloud computing allowed us to increase resource utilization and increase our flexibility to respond to business demand. Docker Containers are the next quantum leap - Are they?! Databases always represented an additional set of challenges unique to running workloads requiring a maximum of I/O, network, CPU resources combined with data locality.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"A lot of times people will come to us and have a very diverse set of requirements or very customized need and we'll help them to implement it in a fashion that you can't just buy off of the shelf," explained Nick Rose, CTO of Enzu, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
As software becomes more and more complex, we, as software developers, have been splitting up our code into smaller and smaller components. This is also true for the environment in which we run our code: going from bare metal, to VMs to the modern-day Cloud Native world of containers, schedulers and micro services. While we have figured out how to run containerized applications in the cloud using schedulers, we've yet to come up with a good solution to bridge the gap between getting your contain...
"We host and fully manage cloud data services, whether we store, the data, move the data, or run analytics on the data," stated Kamal Shannak, Senior Development Manager, Cloud Data Services, IBM, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.