Welcome!

News Feed Item

Fujitsu Develops New Data Transfer Protocol Enabling Improved Transmissions Speeds

- Software-only approach enables over 30 times improvement in file transfer speeds between Japan and the US
- Reduces virtual desktop operating latency to less than 1/6 of previous levels

Kawasaki, Japan, Jan 29, 2013 - (JCN Newswire) - Fujitsu Laboratories Limited today announced the development of a new data transfer protocol that, by taking a software-only approach, can significantly improve the performance of file transfers, virtual desktops and other various communications applications.

Conventionally, when using transmission control protocol (TCP)(1) - the standard protocol employed in communications applications - in a low-quality communications environment, such as when connected to a wireless network or during times of line congestion, data loss (packet loss) can occur, leading to significant drops in transmission performance due to increased latency from having to retransmit data.

To address this problem, Fujitsu Laboratories has succeeded at a software-only approach, developing: 1) A new protocol that incorporates an efficient proprietarily developed retransmission method based on user datagram protocol (UDP)(2), an optimized way to deliver streaming media able to reduce latency resulting from data retransmission when packet loss occurs; 2) Control technology that addresses the problem of UDP transmissions consuming excess bandwidth by performing a real-time measurement of available network bandwidth and securing an optimal amount of communications bandwidth without overwhelming TCP's share of the bandwidth; and 3) Technology that, by employing the new protocol, makes it possible to easily speed up existing TCP applications without having to modify them.

Through a simple software installation, the new technology will make it possible to speed up TCP applications that previously required costly specialized hardware, and it can also be easily incorporated into mobile devices and other kinds of equipment. Moreover, compared with TCP, the technology enables a greater than 30 times improvement in file transfer speeds between Japan and the US, in addition to reducing virtual desktop operating latency to less than 1/6 of previous levels. This, in turn, is expected to make it easier to take advantage of various applications employing international communication lines and wireless networks which are anticipated to become increasingly widespread.

Background

With the increased popularity of mobile devices and cloud services in recent years, a wide range of applications have begun to utilize communications capabilities. In many applications, such as file transfer, virtual desktop, and other communications applications, TCP is employed as a standard communications protocol. One issue with TCP is that data loss (packet loss) can occur in low-quality communications environments, resulting in significant drops in transmission performance (reduced throughput and higher latency) due to increased latency from having to retransmit data. In the future, it is expected that there will be greater opportunities to take advantage of international communications lines and wireless networks, making it necessary to ensure that transmission performance does not drop even when connected to a low-quality communications environment.

Technological Challenges

Currently, one well-known method of speeding up application transmission speeds in low-quality communications environments is to employ specialized acceleration hardware. This kind of specialized equipment, however, is expensive and bulky, making it difficult to incorporate into mobile devices. High-speed transmission methods for transferring files using software-based acceleration also exist, but to support a variety of existing TCP applications using these methods, it has been necessary to make modifications to the traffic processing components of each application.

Newly Developed Technology

By developing a proprietary software-based transfer protocol, Fujitsu Laboratories has succeeded in significantly improving the throughput and operating latency of existing TCP applications.

Key features of the new technology are as follows:

1) New protocol improves throughput and latency in low-quality communications environments

Fujitsu has developed a new protocol that incorporates a proprietarily developed and efficient retransmission method based on UDP, a protocol optimized for delivering streaming media. As a result, the new protocol is able to reduce latency resulting from data retransmission when packet loss occurs. The protocol can quickly distinguish between lost packets and packets that have not yet arrived at their destination, thereby preventing unnecessary retransmissions and latency from occurring. By incorporating the new protocol as a software add-on to UDP, it is possible to maintain the high speeds typical of UDP while avoiding packet loss and packets being sent in reverse order, UDP's main weaknesses. This, in turn, has enabled improvements in packet delivery and latency. In a comparison with standard TCP, the new protocol achieved a throughput increase of over 30 times during a simulated file transfer between Japan and the US, and operating packet delivery latency was reduced to less than 1/6 of previous levels.

2) Communications bandwidth control technology using real-time measurement of available network bandwidth

Fujitsu Laboratories developed a control technology that, by performing real-time measurement of available network bandwidth, can secure an optimal amount of communications bandwidth without overwhelming the share of bandwidth used by other TCP communications in a mixed TCP environment. For example, when other TCP communications are using relatively little bandwidth, the bandwidth share for the new protocol will increase, and when other TCP communications are taking up a higher percentage of bandwidth, the new protocol will use a smaller share.

3) Technology for accelerating existing TCP applications without any modifications

Fujitsu Laboratories has developed a technology that automatically converts TCP traffic standard for a wide variety of applications into the new protocol described in (1) above. This makes it possible to significantly improve the speed of a host of existing applications, including file transfer applications, virtual desktop applications, and web browsing applications, all without the need for any modifications.

Results

The use of the new technology is expected to speed up the performance of a wide range of communications applications employing international communication lines and wireless networks which are anticipated to become widely used more and more. For instance, the technology can help speed up web browsing and file download speeds in mobile communications environments where there is deterioration due to building obstructions or movement. In addition, the technology can improve data transfer speeds between datacenters in Japan and the US. It is also expected to help improve the usability of virtual desktops when accessing a virtual desktop located on a remote server using a low-quality communications environment.

Future Development

During fiscal 2013, Fujitsu Laboratories aims to commercialize the new technology as a communications middleware solution for improving communications speeds without having to modify existing TCP applications.

(1) Transmission Control Protocol (TCP): An Internet protocol that guarantees data delivery through a retransmission mechanism.
(2) User Datagram Protocol (UDP): An Internet protocol that does not guarantee data delivery.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259


Copyright 2013 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Conference Guru has been named “Media Sponsor” of the 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great deals to gre...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develop...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
Companies are harnessing data in ways we once associated with science fiction. Analysts have access to a plethora of visualization and reporting tools, but considering the vast amount of data businesses collect and limitations of CPUs, end users are forced to design their structures and systems with limitations. Until now. As the cloud toolkit to analyze data has evolved, GPUs have stepped in to massively parallel SQL, visualization and machine learning.
"Evatronix provides design services to companies that need to integrate the IoT technology in their products but they don't necessarily have the expertise, knowledge and design team to do so," explained Adam Morawiec, VP of Business Development at Evatronix, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
"ZeroStack is a startup in Silicon Valley. We're solving a very interesting problem around bringing public cloud convenience with private cloud control for enterprises and mid-size companies," explained Kamesh Pemmaraju, VP of Product Management at ZeroStack, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...