Welcome!

News Feed Item

Fujitsu Develops Compact, High-Performance and Energy-Efficient DSP for Mobile Device Baseband Processing

Leverages supercomputer technology to lower energy requirements for smartphones and other wireless mobile devices

Kawasaki, Japan, Feb 1, 2013 - (JCN Newswire) - Fujitsu Laboratories Limited today announced the development of a digital signal processor (DSP) for use in mobile device baseband processing. By employing a vector processing architecture(1) as used in supercomputers, the DSP can efficiently run highly repetitive processes common in LTE(2) and other wireless processes. This, in turn, allows for greater energy efficiency.

By using 28-nanometer (nm) process technology and when running at 250 MHz, DSP is capable of processing data at 12 GOPS (12 billion operations per second). Excluding memory, the DSP measures only 0.4 mm2, and it consumes only 30 milliwatts (mW) of power, 20% less than existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile devices. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Details of the new technology will be presented at the 2013 International Symposium on VLSI Design, Automation and Test (2013 VLSI-DAT), scheduled to open on April 22 in Taiwan.

Background

In recent years, smartphones, tablets, and other wireless devices have rapidly gained in popularity. As the speed of wireless networks increase, manufacturers have launched models that support new wireless communications standards such as LTE, which is currently being rolled out worldwide, in addition to conventional standards such as GSM and 3G. To support these wireless standards, a signal processing circuit (baseband processor) compliant with each computation is required. As a result, being able to reduce the size and power consumption of baseband processor components is crucial to improving the cost and battery life of devices.

Technological Challenges

Typical baseband processing circuits are implemented using specialized hardware to support each communications standard, requiring a number of circuits to support different standards. Consequently, reducing the size of circuits has proved challenging. On the other hand, there exist alternative software-based approaches to supporting each communications standards using DSPs. Given the massive signal processing requirements of LTE, however, these approaches are limited in their ability to simultaneously achieve both high processing performance and low energy consumption.

Newly Developed Technology

Fujitsu Laboratories has developed a new DSP that employs a vector processing architecture used in supercomputers. The DSP can efficiently run highly repetitive processes that are common in LTE and other wireless processes, thereby achieving greater energy efficiency.

Key features of the newly developed DSP are as follows:

1) Vector processing architecture

The DSP employs a vector architecture found in supercomputers. With a typical processor, a single instruction will be executed on a single piece of data at a time (scalar data). By contrast, a vector processor will execute a single instruction on multiple pieces of data (vector data) at a time. As a result, when repeating the same process for multiple data elements, the ability of the vector architecture to complete a task with a single instruction makes it possible to cut down on the amount of processing and energy required to read and decode instructions from the memory.

LTE uses the OFDM(3) modulation method and communicates by bundling data that is carried by up to 1,200 "subcarriers" in a wireless signal. To extract information from an incoming signal, the DSP must apply the same process repeatedly for each subcarrier. This makes the vector approach more effective.

Figure 1 shows a block diagram of the newly developed DSP. The DSP consists of a vector engine, which employs a vector architecture, as well as a conventional CPU. The CPU reads in program code from the instruction memory, decodes the instruction, and if the vector approach is suitable for use on the instruction, it is transferred to the vector engine where it is executed. Other instructions are executed in the CPU as usual.

2) Vector engine optimized for baseband processing

Figure 2 shows an internal diagram of the vector engine itself. Instructions transferred from the CPU are stored in the instruction buffer. Stored instructions are decoded one by one by the sequencer, and the required vector processing pipeline(4) is controlled to execute the instruction. The number of vector data (vector length) that can be calculated in a single instruction is 64 data elements, a value optimized for use in mobile device baseband processing. Rather than processing 64 data elements sequentially, eight parallel processing elements process the data in eight rounds, thereby achieving higher speeds.

The vector engine features a small circuit size, and to increase the efficiency of baseband processing, there are two pipelines for processing multiply instructions on vector data, and there are also two pipelines for processing load instructions (or conversely, store instructions) that load vector data to the register file, which temporarily stores data from memory, for a total of four pipelines. All four pipelines can process addition, subtraction, and logic operations on vector data.

Results

With the addition of the newly developed vector engine, many pieces of data can be processed with a single instruction, thereby enabling more efficient data processing. This, in turn, will significantly contribute to reduced energy consumption in wireless baseband LSIs. A DSP using 28nm process technology and running at 250 MHz is able to process 12 GOPS (12 billion operations per second). Fujitsu Laboratories succeeded in developing a compact DSP that measures only 0.4 mm2 (without memory) and, in terms of power consumption, requires only 30mW - a 20% improvement over existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile phones. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Future Development

The new DSP will be incorporated into a communications processor from Access Network Technology Limited that is scheduled for use in Fujitsu smartphones and elsewhere. Going forward, Fujitsu Laboratories plans to continue making performance improvements to the processor to enable it to keep pace with advances in higher speed wireless communications standards.

(1) Vector processing architecture: A processor architecture for processing calculations on vector data (a one-dimensional array of data) with a single instruction.
(2) Long Term Evolution (LTE): The name of the latest mobile communications standard for wireless devices.
(3) Orthogonal Frequency-Division Multiplexing (OFDM): A wireless modulation encoding used also in wireless LANs.
(4) Processing pipeline: A circuit that executes an arithmetic process according to an instruction. By dividing execution into multiple stages, the calculation is executed according to a workflow process.

For further details with diagrams, please visit www.fujitsu.com/global/news/pr/archives/month/2013/20130201-04.html.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259


Copyright 2013 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
SYS-CON Events announced today that Keisoku Research Consultant Co. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Keisoku Research Consultant, Co. offers research and consulting in a wide range of civil engineering-related fields from information construction to preservation of cultural properties. For more information, vi...
The last two years has seen discussions about cloud computing evolve from the public / private / hybrid split to the reality that most enterprises will be creating a complex, multi-cloud strategy. Companies are wary of committing all of their resources to a single cloud, and instead are choosing to spread the risk – and the benefits – of cloud computing across multiple providers and internal infrastructures, as they follow their business needs. Will this approach be successful? How large is the ...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
SYS-CON Events announced today that B2Cloud will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. B2Cloud specializes in IoT devices for preventive and predictive maintenance in any kind of equipment retrieving data like Energy consumption, working time, temperature, humidity, pressure, etc.
SYS-CON Events announced today that N3N will exhibit at SYS-CON's @ThingsExpo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. N3N’s solutions increase the effectiveness of operations and control centers, increase the value of IoT investments, and facilitate real-time operational decision making. N3N enables operations teams with a four dimensional digital “big board” that consolidates real-time live video feeds alongside IoT sensor data a...
SYS-CON Events announced today that Daiya Industry will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Daiya Industry specializes in orthotic support systems and assistive devices with pneumatic artificial muscles in order to contribute to an extended healthy life expectancy. For more information, please visit https://www.daiyak...
SYS-CON Events announced today that Interface Corporation will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Interface Corporation is a company developing, manufacturing and marketing high quality and wide variety of industrial computers and interface modules such as PCIs and PCI express. For more information, visit http://www.i...
SYS-CON Events announced today that Mobile Create USA will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Mobile Create USA Inc. is an MVNO-based business model that uses portable communication devices and cellular-based infrastructure in the development, sales, operation and mobile communications systems incorporating GPS capabi...
In his session at @ThingsExpo, Greg Gorman is the Director, IoT Developer Ecosystem, Watson IoT, will provide a short tutorial on Node-RED, a Node.js-based programming tool for wiring together hardware devices, APIs and online services in new and interesting ways. It provides a browser-based editor that makes it easy to wire together flows using a wide range of nodes in the palette that can be deployed to its runtime in a single-click. There is a large library of contributed nodes that help so...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists examined how DevOps helps to meet the de...
Elon Musk is among the notable industry figures who worries about the power of AI to destroy rather than help society. Mark Zuckerberg, on the other hand, embraces all that is going on. AI is most powerful when deployed across the vast networks being built for Internets of Things in the manufacturing, transportation and logistics, retail, healthcare, government and other sectors. Is AI transforming IoT for the good or the bad? Do we need to worry about its potential destructive power? Or will we...
Cloud Expo, Inc. has announced today that Andi Mann and Aruna Ravichandran have been named Co-Chairs of @DevOpsSummit at Cloud Expo Silicon Valley which will take place Oct. 31-Nov. 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. "DevOps is at the intersection of technology and business-optimizing tools, organizations and processes to bring measurable improvements in productivity and profitability," said Aruna Ravichandran, vice president, DevOps product and solutions marketing...
21st International Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Me...
SYS-CON Events announced today that mruby Forum will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. mruby is the lightweight implementation of the Ruby language. We introduce mruby and the mruby IoT framework that enhances development productivity. For more information, visit http://forum.mruby.org/.
SYS-CON Events announced today that Suzuki Inc. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Suzuki Inc. is a semiconductor-related business, including sales of consuming parts, parts repair, and maintenance for semiconductor manufacturing machines, etc. It is also a health care business providing experimental research for...