Welcome!

News Feed Item

Fujitsu Develops Compact, High-Performance and Energy-Efficient DSP for Mobile Device Baseband Processing

Leverages supercomputer technology to lower energy requirements for smartphones and other wireless mobile devices

Kawasaki, Japan, Feb 1, 2013 - (JCN Newswire) - Fujitsu Laboratories Limited today announced the development of a digital signal processor (DSP) for use in mobile device baseband processing. By employing a vector processing architecture(1) as used in supercomputers, the DSP can efficiently run highly repetitive processes common in LTE(2) and other wireless processes. This, in turn, allows for greater energy efficiency.

By using 28-nanometer (nm) process technology and when running at 250 MHz, DSP is capable of processing data at 12 GOPS (12 billion operations per second). Excluding memory, the DSP measures only 0.4 mm2, and it consumes only 30 milliwatts (mW) of power, 20% less than existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile devices. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Details of the new technology will be presented at the 2013 International Symposium on VLSI Design, Automation and Test (2013 VLSI-DAT), scheduled to open on April 22 in Taiwan.

Background

In recent years, smartphones, tablets, and other wireless devices have rapidly gained in popularity. As the speed of wireless networks increase, manufacturers have launched models that support new wireless communications standards such as LTE, which is currently being rolled out worldwide, in addition to conventional standards such as GSM and 3G. To support these wireless standards, a signal processing circuit (baseband processor) compliant with each computation is required. As a result, being able to reduce the size and power consumption of baseband processor components is crucial to improving the cost and battery life of devices.

Technological Challenges

Typical baseband processing circuits are implemented using specialized hardware to support each communications standard, requiring a number of circuits to support different standards. Consequently, reducing the size of circuits has proved challenging. On the other hand, there exist alternative software-based approaches to supporting each communications standards using DSPs. Given the massive signal processing requirements of LTE, however, these approaches are limited in their ability to simultaneously achieve both high processing performance and low energy consumption.

Newly Developed Technology

Fujitsu Laboratories has developed a new DSP that employs a vector processing architecture used in supercomputers. The DSP can efficiently run highly repetitive processes that are common in LTE and other wireless processes, thereby achieving greater energy efficiency.

Key features of the newly developed DSP are as follows:

1) Vector processing architecture

The DSP employs a vector architecture found in supercomputers. With a typical processor, a single instruction will be executed on a single piece of data at a time (scalar data). By contrast, a vector processor will execute a single instruction on multiple pieces of data (vector data) at a time. As a result, when repeating the same process for multiple data elements, the ability of the vector architecture to complete a task with a single instruction makes it possible to cut down on the amount of processing and energy required to read and decode instructions from the memory.

LTE uses the OFDM(3) modulation method and communicates by bundling data that is carried by up to 1,200 "subcarriers" in a wireless signal. To extract information from an incoming signal, the DSP must apply the same process repeatedly for each subcarrier. This makes the vector approach more effective.

Figure 1 shows a block diagram of the newly developed DSP. The DSP consists of a vector engine, which employs a vector architecture, as well as a conventional CPU. The CPU reads in program code from the instruction memory, decodes the instruction, and if the vector approach is suitable for use on the instruction, it is transferred to the vector engine where it is executed. Other instructions are executed in the CPU as usual.

2) Vector engine optimized for baseband processing

Figure 2 shows an internal diagram of the vector engine itself. Instructions transferred from the CPU are stored in the instruction buffer. Stored instructions are decoded one by one by the sequencer, and the required vector processing pipeline(4) is controlled to execute the instruction. The number of vector data (vector length) that can be calculated in a single instruction is 64 data elements, a value optimized for use in mobile device baseband processing. Rather than processing 64 data elements sequentially, eight parallel processing elements process the data in eight rounds, thereby achieving higher speeds.

The vector engine features a small circuit size, and to increase the efficiency of baseband processing, there are two pipelines for processing multiply instructions on vector data, and there are also two pipelines for processing load instructions (or conversely, store instructions) that load vector data to the register file, which temporarily stores data from memory, for a total of four pipelines. All four pipelines can process addition, subtraction, and logic operations on vector data.

Results

With the addition of the newly developed vector engine, many pieces of data can be processed with a single instruction, thereby enabling more efficient data processing. This, in turn, will significantly contribute to reduced energy consumption in wireless baseband LSIs. A DSP using 28nm process technology and running at 250 MHz is able to process 12 GOPS (12 billion operations per second). Fujitsu Laboratories succeeded in developing a compact DSP that measures only 0.4 mm2 (without memory) and, in terms of power consumption, requires only 30mW - a 20% improvement over existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile phones. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Future Development

The new DSP will be incorporated into a communications processor from Access Network Technology Limited that is scheduled for use in Fujitsu smartphones and elsewhere. Going forward, Fujitsu Laboratories plans to continue making performance improvements to the processor to enable it to keep pace with advances in higher speed wireless communications standards.

(1) Vector processing architecture: A processor architecture for processing calculations on vector data (a one-dimensional array of data) with a single instruction.
(2) Long Term Evolution (LTE): The name of the latest mobile communications standard for wireless devices.
(3) Orthogonal Frequency-Division Multiplexing (OFDM): A wireless modulation encoding used also in wireless LANs.
(4) Processing pipeline: A circuit that executes an arithmetic process according to an instruction. By dividing execution into multiple stages, the calculation is executed according to a workflow process.

For further details with diagrams, please visit www.fujitsu.com/global/news/pr/archives/month/2013/20130201-04.html.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259


Copyright 2013 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
The Internet of Things can drive efficiency for airlines and airports. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Sudip Majumder, senior director of development at Oracle, discussed the technical details of the connected airline baggage and related social media solutions. These IoT applications will enhance travelers' journey experience and drive efficiency for the airlines and the airports.
Big Data, cloud, analytics, contextual information, wearable tech, sensors, mobility, and WebRTC: together, these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at @ThingsExpo, Erik Perotti, Senior Manager of New Ventures on Plantronics’ Innovation team, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it m...
When you focus on a journey from up-close, you look at your own technical and cultural history and how you changed it for the benefit of the customer. This was our starting point: too many integration issues, 13 SWP days and very long cycles. It was evident that in this fast-paced industry we could no longer afford this reality. We needed something that would take us beyond reducing the development lifecycles, CI and Agile methodologies. We made a fundamental difference, even changed our culture...
With billions of sensors deployed worldwide, the amount of machine-generated data will soon exceed what our networks can handle. But consumers and businesses will expect seamless experiences and real-time responsiveness. What does this mean for IoT devices and the infrastructure that supports them? More of the data will need to be handled at - or closer to - the devices themselves.
Updating DevOps to the latest production data slows down your development cycle. Probably it is due to slow, inefficient conventional storage and associated copy data management practices. In his session at @DevOpsSummit at 20th Cloud Expo, Dhiraj Sehgal, in Product and Solution at Tintri, will talk about DevOps and cloud-focused storage to update hundreds of child VMs (different flavors) with updates from a master VM in minutes, saving hours or even days in each development cycle. He will also...
SYS-CON Events announced today that Dataloop.IO, an innovator in cloud IT-monitoring whose products help organizations save time and money, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Dataloop.IO is an emerging software company on the cutting edge of major IT-infrastructure trends including cloud computing and microservices. The company, founded in the UK but now based in San Fran...
Things are changing so quickly in IoT that it would take a wizard to predict which ecosystem will gain the most traction. In order for IoT to reach its potential, smart devices must be able to work together. Today, there are a slew of interoperability standards being promoted by big names to make this happen: HomeKit, Brillo and Alljoyn. In his session at @ThingsExpo, Adam Justice, vice president and general manager of Grid Connect, will review what happens when smart devices don’t work togethe...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Some people worry that OpenStack is more flash then substance; however, for many customers this could not be farther from the truth. No other technology equalizes the playing field between vendors while giving your internal teams better access than ever to infrastructure when they need it. In his session at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, will talk through some real-world OpenStack deployments and look into the ways this can benefit customers of all sizes....
SYS-CON Events announced today that Addteq will exhibit at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Addteq is one of the top 10 Platinum Atlassian Experts who specialize in DevOps, custom and continuous integration, automation, plugin development, and consulting for midsize and global firms. Addteq firmly believes that automation is essential for successful software releases. Addteq centers its products an...
In his session at @ThingsExpo, Sudarshan Krishnamurthi, a Senior Manager, Business Strategy, at Cisco Systems, will discuss how IT and operational technology (OT) work together, as opposed to being in separate siloes as once was traditional. Attendees will learn how to fully leverage the power of IoT in their organization by bringing the two sides together and bridging the communication gap. He will also look at what good leadership must entail in order to accomplish this, and how IT managers ca...
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain.
SYS-CON Events announced today that CA Technologies has been named “Platinum Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY, and the 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business – from apparel to energy – is being rewritten by software. From ...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...