Welcome!

Related Topics: Java IoT, Industrial IoT, Mobile IoT, Microservices Expo, IBM Cloud, Weblogic, IoT User Interface

Java IoT: Article

Component Models in Java | Part 2

OSGi Component Model

OSGi is the latest component model to join the bandwagon of component models, which provides a platform for component oriented development and assembly. OSGi framework is a standards based platform whose specifications are provided by the OSGi Alliance (www.osgi.org, formerly OSGi was referred as Open Services Gateway Initiative). OSGi Alliance is an industry backed nonprofit organization which was founded in March 1999. The OSGi specification has gone through many releases and the current major version in use is 4 and version 5 has been introduced recently.

The OSGi defines a dynamic module system for Java. This offers help for Java's modularity problems by providing better control to the code structure, manage the lifecycle of the code and a complete loosely coupled approach that is much needed for component-oriented development.

The OSGi specification consists of two parts:

  • OSGi Framework
  • OSGi Standard services

The OSGi framework is the OSGi runtime environment that provides all the functionality as per the specifications. Applications are deployed and executed in the OSGi framework. The OSGi framework provides an API for the development of components. There are a number of framework implementations and some of the popular ones are Eclipse Equinox, Apache Felix and Knoplerfish. OSGi standard services define reusable services that should be provided as part of the development platform implementation. There are three conceptual layers in OSGi framework:

  • Module layer - Responsible for packaging and sharing code
  • Lifecycle layer - Responsible for managing the lifecycle of deployed module during runtime
  • Service layer - Responsible for dynamic service publication, searching and binding

OSGi Bundle
An OSGi bundle is a deployment module in the form of a JAR file. A module in OSGi parlance is known as a bundle. Bundles contain class files and resource files, similar to the regular JAR file in Java, but in addition they contain manifest information that contains metadata about the bundle. Apart from the regular JAR file's manifest contents, a bundle's manifest file has OSGi specific information such as module name, version number, dependencies, etc., thus giving better modularity and easy maintainability. Bundles are more powerful than JAR files in enforcing module boundaries, because a bundle needs to explicitly define what portion of its internal code is externally visible. Similarly, a bundle must explicitly declare any external dependencies that it has with the code exposed by other bundles. A bundle must have a unique identity - Bundle Name and Version.

The OSGi framework matches the exports and imports of deployed bundles to dynamically wire the entire application. This process of bundle resolution ensures consistency among the different bundles in terms of versions and other constraints. An application in OSGi is nothing but a collection of bundles with explicitly defined dependencies. A bundle is deployed in OSGi framework once it is developed.

OSGi Service Registry
The OSGi Service registry promotes service oriented programming. The service registry provides service publication service discovery and service binding. The bundles deployed in the OSGi framework can leverage the service registry later for publishing and consuming services. A bundle providing a service publishes the service in the OSGi Service Registry. A service is defined by a Java Interface, which represents a conceptual contract between the provider and consumer. A potential consumer can use the registry to search for providers of a particular service. Once if finds a service provider, it can bind and use the service. Services layer in OSGi facilitates one more level of dynamism other than bundles. Just as bundles can be added and removed in a running application, the Services can appear and go dynamically in a runtime application.

OSGi Component
As discussed earlier, a bundle is the deployment unit in OSGi component model. A bundle is a JAR file that contains:

  • Class files
  • Resource files
  • Manifest file (with additional metadata)

The class files are typically the interface and the implementation which constitutes the component. The manifest will have additional metadata as shown below:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: com.demo.helloWorld

Bundle-SymbolicName: com.demo.helloWorld

Bundle-Version: 1.0.0.qualifier

Bundle-Activator: com.demo.Activator

Bundle-Vendor: PIRAM

Bundle-RequiredExecutionEnvironment: JavaSE-1.7

Import-Package: org.osgi.framework;version="1.3.0"

Bundle-ActivationPolicy: lazy

The OSGi Framework provides an inbuilt API called BundleActivator which helps the bundle to hook its own lifecycle management. The BundleActivator interface has two methods - start() and stop() which are invoked when the bundle is started and stopped respectively. Any bundle can implement this interface to check its own life cycle. The bundle could perform actions as specified in the start and stop methods of the Activator class. The use of bundle as a component for building application on the OSGi framework does not just depend on the bundle doing the work whenever it is started or stopped. The bundle needs to be able to expose certain functionality as provided interfaces and it needs to consume functionalities as per the require interfaces. Thus a collection of bundles made into an assembly should be able to work together to form a system. Generally the provided interface will be created as a separate bundle and the implementations can be wired dynamically by the OSGi runtime from the implementation bundles. There can be more than one implementation, the wiring happens depending on the runtime.

Example to understand OSGi Component Model
The OSGi component model can be understood with the same shopping Cart example discussed in the earlier models.

Figure 3: OSGi Component Model - Cart Component Example

The Cart application in this example is created with the following bundles for better modularity and maintainability.

  1. Interface Bundle (com.online.shopping)
  2. Implementation Bundle (CartImpl)
  3. Client Bundle (CartClient)

The Cart component is comprised of interface bundle and implementation bundle. The interface bundle (com.online.shopping) defines an interface ICart. This interface will be used by the implementation bundle to invoke the exposed services. The client bundle will use the interface for invoking the required services which gets bounded to the implementation bundle by the service registry.

Interface Bundle
The interface bundle contains the interface ICart for the Cart component and is defined as below:

package com.online.shopping;

import java.util.Collection;

public interface ICart {
public void addItem(Product product, int quantity);
public Collection<Product> listItems();    
public double getTotalPrice();
public void clearCart();
}

This bundle has ONLY the interface and its helper class and it exports the com.online.shopping package as shown in the manifest file below:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: CartIntf
Bundle-SymbolicName: CartIntf
Bundle-Version: 1.0.0.qualifier
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: org.osgi.framework;version="1.3.0"
Export-Package: com.online.shopping

The structure of the bundle jar file is as below:

Figure 4: Structure of Interface Bundle

Implementation Bundle
ICart interface is implemented by the class CartImpl, whose code as demonstrated below:

package com.online.shopping.impl;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

import com.online.shopping.ICart;
import com.online.shopping.Product;

public class CartImpl implements ICart {
Map<Product, Integer> items = new HashMap<Product, Integer>();      

@Override
public void addItem(Product product, int quantity) {
if(items.containsKey(product)) {
quantity +=items.get(product);
}
items.put(product, quantity);
}

@Override

public Collection<Product> listItems() {

return items.keySet();

}

@Override
public double getTotalPrice() {
double totalPrice = 0;
for(Product product: items.keySet()) {
totalPrice+=product.getPrice()* items.get(product);           
}
return totalPrice;
}

@Override
public void clearCart() {
items.clear();
}

}

The CartImpl is the class in the implementation bundle that implements the ICart interface and provides the ICart service implementation. In the implementation bundle, the interface com.online.shopping.ICart is not added to the CLASSPATH, but imported by the OSGi framework. This bundle imports the interface bundle as explained in the MANIFEST.MF below:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: CartImpl
Bundle-SymbolicName: CartImpl
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: com.online.shopping,
org.osgi.framework;version="1.6.0"
Service-Component: META-INF/component.xml

The implementation bundle is exposed as a declarative service component. From the manifest file, it is evident that the bundle is not exported as a package, but it is exposed as a service with the entry - Service-Component that this is exposed as a component and the component description is available in component.xml. With the help of such XML files, components declare their provided services. The OSGi framework helps to publish the CartImpl as a service in the OSGi service registry. The component.xml is as below:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="CartImpl">
<implementation class="com.online.shopping.impl.CartImpl"/>
<service>
<provide interface="com.online.shopping.ICart"/>
</service>
</scr:component>

The ICart is exposed as a service and the service is implemented by the CartImpl implementation class. Looking at the component.xml, it is clear that the component provides the ICart service. The component declares the implementation class and the provided interface. The declarative services in the OSGi framework publish the service at the execution time after the bundle is activated. The structure of the JAR file of the bundle is as follows:

Figure 5: Structure of Implementation Bundle

Client Bundle
The client bundle is supposed to consume the services exposed by the ICart service implementation and consume it. The client bundle is another component that imports the com.online.shopping package and consumes the service through OSGi service registry. The client bundle's manifest looks as below:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: CartClient
Bundle-SymbolicName: CartClient
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: com.online.shopping,
org.osgi.framework;version="1.6.0",
org.osgi.service.component;version="1.1.0"
Service-Component: META-INF/component.xml

The client is also a component which consumes the services provided by the ICart component.

Figure 6: Structure of Client Bundle

The component.xml in client bundle has reference to the ICart service interface.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="CartClient">
<implementation class="com.client.CartClient"/>
<reference bind="gotService" cardinality="1..1" interface="com.online.shopping.ICart" name="ICart" policy="dynamic" unbind="lostService"/>
</scr:component>

Apart from the interface reference, the component.xml also refers to some methods called ‘gotService' and ‘lostService' during binding and unbinding of service references. These are the methods defined in the client class which will be invoked with the associated service references into the service object. This allows the component to find out the services without retrieving them. The declarative specifications in OSGi framework defines the methods where the service reference will be injected. The component service policy may be static or dynamic. In static policy, the service reference is injected once and not changed until the component is deactivated. Where as in the dynamic policy, the component is notified whenever the service comes or goes utilizing the true dynamism. In the example, it is dynamic. The client invokes the ICart service as follows:

package com.client;

import java.util.Collection;

import org.osgi.framework.ServiceReference;
import org.osgi.service.component.ComponentContext;

import com.online.shopping.ICart;
import com.online.shopping.Product;

public class CartClient {

ComponentContext context;
ServiceReference reference;
ICart cart;

public void activate(ComponentContext context) {
System.out.println("Activate Component");

if(reference!= null) {
cart = (ICart)context.locateService("ICart", reference);

Product product = new Product();
product.setName("OSGi");
product.setPrice(550.00);
cart.addItem(product, 20);

Product newProduct = new Product();
newProduct.setName("Enterprise OSGi");
newProduct.setPrice(400.00);
cart.addItem(newProduct, 10);

Collection<Product> productItems = cart.listItems();
for(Product items: productItems) {
System.out.println(items.getName()+"******"+ items.getPrice());             
}            

System.out.println("Total Price of Cart Items: "+cart.getTotalPrice());

cart.clearCart();
}

}

public void gotService(ServiceReference reference) {
System.out.println("Bind Service");
this.reference = reference;
}

public void lostService(ServiceReference reference) {
System.out.println("unbind Service");
this.reference = null;           
}

}

The client has defined three methods:

  • activate - part of declarative services API. This method is invoked when this component is activated. The ComponentContext is used to locate the ICart with the injected service reference.
  • gotService - user defined method as available in the component.xml, this method is invoked with the service reference (using dependency injection) when the service object is binded.
  • lostService - user defined method as mentioned in the client component.xml, this method is invoked with the injected service reference when the service object is unbinded.

Figure 7: Cart Component Bundles Deployment in OSGi Container

The client is not even aware of the implementation bundle. If there are multiple implementations available for the same service, the service is bounded dynamically by the environment. If there is any change in the implementation, only the implementation bundle will undergo change. A revised bundle can provide additional services which can be consumed by clients. So replacing components is easier and will not affect any other component. This way, OSGi gives good modularity by de-coupling components and a pluggable dynamic service model which are much needed features of a component model.

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By S Sangeetha

S Sangeetha is a Senior Technical Architect at the E-Commerce Research Labs at Infosys Limited. She has over 15 years of experience in architecture, design and development of enterprise Java applications. She is also involved in enhancing the technical skills of Architects at Infosys. She has co-authored a book on ‘J2EE Architecture’ and also has written numerous articles on Java for various online Java forums like JavaWorld, java.net, DevX.com and internet.com. She can be reached at [email protected]

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
In the rush to compete in the digital age, a successful digital transformation is essential, but many organizations are setting themselves up for failure. There’s a common misconception that the process is just about technology, but it’s not. It’s about your business. It shouldn’t be treated as an isolated IT project; it should be driven by business needs with the committed involvement of a range of stakeholders.
SYS-CON Events announced today that EastBanc Technologies will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. EastBanc Technologies has been working at the frontier of technology since 1999. Today, the firm provides full-lifecycle software development delivering flexible technology solutions that seamlessly integrate with existing systems – whether on premise or cloud. EastBanc Technologies partners with p...
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device. For more information, please visit https://www.mangoapps.com/.
In today's enterprise, digital transformation represents organizational change even more so than technology change, as customer preferences and behavior drive end-to-end transformation across lines of business as well as IT. To capitalize on the ubiquitous disruption driving this transformation, companies must be able to innovate at an increasingly rapid pace. Traditional approaches for driving innovation are now woefully inadequate for keeping up with the breadth of disruption and change facin...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in Embedded and IoT solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and ...
SYS-CON Events announced today that Catchpoint Systems, Inc., a provider of innovative web and infrastructure monitoring solutions, has been named “Silver Sponsor” of SYS-CON's DevOps Summit at 18th Cloud Expo New York, which will take place June 7-9, 2016, at the Javits Center in New York City, NY. Catchpoint is a leading Digital Performance Analytics company that provides unparalleled insight into customer-critical services to help consistently deliver an amazing customer experience. Designed...
18th Cloud Expo, taking place June 7-9, 2016, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some...
@DevOpsSummit taking place June 7-9, 2016 at Javits Center, New York City, and Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 18th International @CloudExpo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world.
How will your company move to the cloud while ensuring a solid security posture? Organizations from small to large are increasingly adopting cloud solutions to deliver essential business services at a much lower cost. According to cyber security experts, the frequency and severity of cyber-attacks are on the rise, causing alarm to businesses and customers across a variety of industries. To defend against exploits like these, a company must adopt a comprehensive security defense strategy that is ...
SYS-CON Events announced today Object Management Group® has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
Cloud computing delivers on-demand resources that provide businesses with flexibility and cost-savings. The challenge in moving workloads to the cloud has been the cost and complexity of ensuring the initial and ongoing security and regulatory (PCI, HIPAA, FFIEC) compliance across private and public clouds. Manual security compliance is slow, prone to human error, and represents over 50% of the cost of managing cloud applications. Determining how to automate cloud security compliance is critical...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...