Welcome!

News Feed Item

Hitachi Commences Demonstration Site for Japan-U.S. Island Grid Project in Hawaii

Hitachi, Ltd. (TSE: 6501, “Hitachi”) today announced that it has begun operations on the demonstration site for the Japan-U.S. Island Grid Project on Maui Island, Hawaii, in collaboration with the New Energy and Industrial Technology Development Organization (“NEDO”), Mizuho Bank, Ltd. (“Mizuho Bank”) and Cyber Defense Institute, Inc. (“Cyber Defense Institute”).

The EV Battery Charger at the Demonstration Site for Japan-U.S. Island Grid Project in Hawaii (Photo ...

The EV Battery Charger at the Demonstration Site for Japan-U.S. Island Grid Project in Hawaii (Photo: Business Wire)

The goal of this Project, which is based on an agreement between the American and Japanese governments, will be to demonstrate smart grid technologies that will enable the efficient use of renewable energy and will contribute to the implementation of a low-carbon social infrastructure system in island regions. The demonstration site has been designed to respond to the rapidly changing demands in the renewable energy market, which will be made possible through the use of electric vehicles (EV) and other innovative technologies.

The demonstration site is scheduled to be in operation from December 17, 2013, through the end of March 2015. Based on the results of analysis and evaluations, the goal of this site is to build a business model for future “Island Smart Grids” that will be built in other sub-tropical regions with environmental conditions similar to Maui.

According to Maui Electric Company, in 2012, renewable energy accounted for 21% of the total energy supply on the Hawaiian island of Maui, and current plans call for at least 40% of increased demand for electrical power throughout the entire state of Hawaii to be met with the use of renewable energy by 2030. In the backdrop of the growing adoption of renewable energy, in 2011, NEDO initiated the Japan-U.S. Island Grid Project (commonly referred to as the “JUMPSmartMaui” Project) to resolve the issues related to the use of these new energy sources. As the company with primary responsibility for this Project, Hitachi oversees all aspects of Project activities, and has been working on the construction of the demonstration site in collaboration with the Mizuho Bank and the Cyber Defense Institute, along with the state of Hawaii, the County of Maui, Hawaiian Electric Industries, Inc., the University of Hawaii, and the American national research laboratories.

In order to create a smart grid for island regions using EV, Hitachi has established an EV Energy Control Center (EVECC), and has already put in place a Distribution Management System (DMS) to control power distribution systems in the Kihei district on the south side of Maui, and the Energy Management System–Plus (EMS-Plus). The goal is to control the balance of supply and demand in electric power systems and support the efficient operations of renewable energy. These systems also incorporate the Direct Load Control (DLC) technology for the direct control of devices in users’ homes, which was introduced in order to minimize the effects of fluctuations in the supply of renewable energy.

Up until now, Hitachi has involved the public to be part of the demonstration on a volunteer basis and participate in the demonstrations primarily focused on the EV users on the island of Maui. Also, regular residents/consumers interested in participating in control demonstrations for electric water heaters installed in private residences in the Kihei area will also be involved in the demonstration.

Hitachi has also promoted the installation of rapid EV charging stations, as well as complying with American cyber security standards, in order to ensure the safety of systems operating throughout the demonstration site and throughout the duration of the demonstration project.

To date, Hitachi had already confirmed approximately 150 volunteers as users of EV, and confirmed approximately 40 residential households interested in participating in control demonstration using electric water heaters. In order to promote further demonstration, the company plans to secure 200 volunteers as EV users and 40 volunteer user households in total. Already, 20 EV charging stands have been installed at five existing rapid EV charging stations, and there are plans to establish a total of 20 charging stations in the future.

Today, an opening ceremony was held on Maui Island to coincide with the launch of the site operations. Attendees at the ceremony included Mr. Hiroshi Kuniyoshi, Executive Director at NEDO; Mr. Koji Tanaka, Executive Vice President and Executive Officer at Hitachi; Mr. Kosuke Nakamura, Managing Executive Officer at Mizuho Bank; and Mr. Makoto Kubota, President of Cyber Defense Institute. Also, Mr. Alan M. Arakawa, Mayor of Maui County, and Ms. Sharon Suzuki, President of Maui Electric Company attended the ceremony.

On-site demonstrations will use wind power generation systems and power systems installed on the island of Maui, which generate a total of 72,000 kW of power. These power systems leverage information technologies to demonstrate controls for the power distribution systems and the load on the consumer side, as well as systems for controlling EV operations and charging, including various types of rapid charging devices. Operations at the demonstration site are scheduled to continue until March 2015, and following this period, subsequent studies and discussions will be conducted for implementing new business models based on the results of these demonstrations and evaluations.

Details of the Japan-U.S. Island Grid Project on Maui Island

In November 2009, an agreement was reached during the Japan-U.S. Summit dedicated to the “Japan/U.S. Clean Energy Technology Collaboration,” and in June 2010, a “Memorandum of Cooperation (MOC) highlighting the Hawaii-Okinawa Partnership on Clean and Efficient Energy Development and Deployment” was completed by the Japanese Ministry of Economy, Trade and Industry, the U.S. Department of Energy, Okinawa Prefecture, and the State of Hawaii.

Upon completion of these agreements, NEDO completed a basic agreement with the State of Hawaii in November 2011, and completed a similar agreement with Maui County in June 2013.

Toward the realization of Island Grids that utilize EV for the more efficient use of renewable energy, Hitachi will strive to achieve integrated energy management in this island region, by linking the Distribution Management System in Kihei with the EVECC. Furthermore, EVECC allow volunteers with their PCs and smart phones to monitor the status of EV charging and automatically adjust the timing of charging startup. With this in mind, the Project will also serve to verify mechanisms for efficiently absorbing excess electric power from renewable energy sources into EV.

The Distribution Management System installed in Kihei will use the Direct Load Control (DLC) technology to stabilize power distribution systems and minimize the effects of fluctuations in power output resulting from increased ratios of renewable energy by controlling frequency support*1, rechargeable batteries, μ (micro) DMS*2 and consumer devices.

This configuration will also enable autonomous control in the low-voltage systems for distributing power to homes, commercial facilities, and other buildings through μDMS. Additionally, it will make it possible to control photovoltaic output and voltage as well as emergency load, in order to prevent transformer overload. Through this Project, Hitachi will verify the effects on the stabilization of power distribution systems achieved by linking DMS and μDMS and by implementing controls on various levels. At the same time, the Project verifies the optimal energy management strategy for the system as a whole, including Direct Load Control and reduction of frequency fluctuations.

*1 Frequency Support Control: Rapid fluctuations in output from wind power generation and other forms of renewable energy are expressed in the form of changes to the frequency of electric power systems. When frequencies appear likely to deviate from specified values, the Distribution Management System reduces frequency fluctuations by isolating non-urgent load and adjusting battery charge and discharge volumes.

*2 μDMS: As a low-level DMS installed in low voltage transformers to control entire power distribution systems, μDMS controls household devices using bidirectional communication between the DMS and the low voltage power distribution systems.

About Hitachi, Ltd.

Hitachi, Ltd. (TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 326,000 employees worldwide. The company’s consolidated revenues for fiscal 2012 (ended March 31, 2013) totaled 9,041 billion yen ($96.1 billion). Hitachi is focusing more than ever on the Social Innovation Business, which includes infrastructure systems, information & telecommunication systems, power systems, construction machinery, high functional material & components, automotive systems and others.

For more information on Hitachi, please visit the company's website at http://www.hitachi.com.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Get deep visibility into the performance of your databases and expert advice for performance optimization and tuning. You can't get application performance without database performance. Give everyone on the team a comprehensive view of how every aspect of the system affects performance across SQL database operations, host server and OS, virtualization resources and storage I/O. Quickly find bottlenecks and troubleshoot complex problems.
Regulatory requirements exist to promote the controlled sharing of information, while protecting the privacy and/or security of the information. Regulations for each type of information have their own set of rules, policies, and guidelines. Cloud Service Providers (CSP) are faced with increasing demand for services at decreasing prices. Demonstrating and maintaining compliance with regulations is a nontrivial task and doing so against numerous sets of regulatory requirements can be daunting task...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
Businesses and business units of all sizes can benefit from cloud computing, but many don't want the cost, performance and security concerns of public cloud nor the complexity of building their own private clouds. Today, some cloud vendors are using artificial intelligence (AI) to simplify cloud deployment and management. In his session at 20th Cloud Expo, Ajay Gulati, Co-founder and CEO of ZeroStack, will discuss how AI can simplify cloud operations. He will cover the following topics: why clou...
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service. In his session at 19th Cloud Exp...
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain. In this power panel at @...
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbraith, a principal engineer at HPE, discussed how to build a fully functional Kubernetes cluster on a number of virtual machines or bare-metal hosts. Also included will be a brief demonstration of running a Galera MyS...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, will share examples from a wide range of industries – includin...
"We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place June 6-8, 2017, at the Javits Center in New York City, New York, is co-located with 20th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry p...
@DevOpsSummit at Cloud taking place June 6-8, 2017, at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long developm...
"We are an all-flash array storage provider but our focus has been on VM-aware storage specifically for virtualized applications," stated Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Between 2005 and 2020, data volumes will grow by a factor of 300 – enough data to stack CDs from the earth to the moon 162 times. This has come to be known as the ‘big data’ phenomenon. Unfortunately, traditional approaches to handling, storing and analyzing data aren’t adequate at this scale: they’re too costly, slow and physically cumbersome to keep up. Fortunately, in response a new breed of technology has emerged that is cheaper, faster and more scalable. Yet, in meeting these new needs they...