Welcome!

Related Topics: @DXWorldExpo, Apache

@DXWorldExpo: Blog Post

An Example to Illustrate Hadoop Code Reuse

The developer tool to realize Hadoop code reuse

The MapReduce of Hadoop is a widely-used parallel computing framework. However, its code reuse mechanism is inconvenient, and it is quite cumbersome to pass parameters. Far different from our usual experience of calling the library function easily, I found both the coder and the caller must bear a sizable amount of precautions in mind when writing even a short pieces of program for calling by others.

However, we finally find that esProc could easily realize code reuse in hadoop. Still a simple and understandable example of grouping and summarizing, let's check out a solution with not so great reusability. Suppose we need to group the big data of order (sales.txt) on HDFS by salesman (empID), and seek the corresponding sales amount of each Salesman. esProc codes are:
Code for summary machine:



Code for node machine:



esProc classifies the distributed computing into two categories: The respective codes for summary machine and node machine. The summary machine is responsible for task scheduling, distributing the task to every task in the form of parameter, and finally integrating and summarizing the computing results from node machines. The node machines are used to get a segment of the whole data piece as specified by parameters, and then group and summarize the data of this segment.

As can be seen, esProc code is intuitive and straightforward, just like the natural and common thinking patterns. The summary machine distributes a task into several segments; distributes them to the unit machine to summarize initially; and then further summarizes the summary machine for the second time. Another thing to note is the esProc grouping and summarizing function "groups", which is used to perform the grouping action over the two-dimensional table A1 by empID and sum up the values of amount fields. The result will be renamed to the understandable totalAmount. This whole procedure of grouping and summarizing is quite concise and intuitive: A1.groups(empID;sum(amount): totalAmount)

In addition, the groups function can be applied to not only the small 2D table, but also the 2D table that is too great to be held in the memory. For example, the cursor mode is adopted for the above codes.

But there are some obvious defects in the above example: The reusability of code is not great. In the steps followed, we will rewrite the above example to a universal algorithm independent of any concrete business. It will be rewritten to control the code flow with parameters, so as to summarize whatsoever data file. In which, the task granularity can be scheduled into arbitrary number of segments, and the computing nodes can be specified at will. Then, the revised codes are shown below:

Code for summary machine. There are altogether 4 parameters defined here: fileName: Big data file to analyze; taskNumber: Number of tasks to distribute; groupField: Fields to group; sumField: Fields to summarize. In addition, the node machine is obtained via reading the profiles.



Code for node machine. In the revised codes, 4 variables are used to receive the parameter from summary machine. Besides the file starting and ending positions (start and end) from the first example, there are two newly-added fields. They are groupField: Fields to group; and sumField: Fields to summarize.



In esProc, it is much easier to pass and use parameter because users can implement the common grouping and summarizing with the least modification workload, and reuse the codes easily.

In Hadoop, the complicated business algorithm is mainly implemented by writing the MapReduce class. By comparison, it is much more inflexible to pass and use parameters in MapReduce. Though it is possible to implement a flexible algorithm independent of the concrete business, it is really cumbersome. Judging the Hadoop codes, the coupling degree of code and business is great. To pass the parameters, a global-variable-like mechanism is required, which is not only inconvenient but also hard to understand. That's why so many questions about MapReduce parameter-passing are here and there on many Web pages. Lots of people feel confused about developing universal algorithms with MapReduce.

In addition, the default separator in the above codes is the comma. It is obvious that users only need to add a variable in a similar way to customize it to any more commonly-used symbol. With it, they can also implement the common action of data filtering and then grouping and summarizing easily. Please note the usage of parameter groupField. It is used as the character parameter in the cell A6, but the macro in A8. In other words, ${gruopField} can be resolved as the formula itself, instead of any parameter in the formula alone. This is the work of dynamic language. Therefore, esProc can realize the completely flexible code, for example, using the parameter to control the summary algorithm to perform sum up or just count, seek the average value or maximum.

"Macro" is a simple special case of dynamic language. esProc supports a more flexible and complete dynamic language system.

As you may find from the above example, esProc can implement Hadoop code reuse easily, and basically achieve the goal of "Write once, run anywhere!". Needless to say, the development efficiency can be boosted dramatically.

personal blog: http://datakeyword.blogspot.com/

website: http://www.raqsoft.com/

More Stories By Jessica Qiu

Jessica Qiu is the editor of Raqsoft. She provides press releases for data computation and data analytics.

Latest Stories
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Companies are harnessing data in ways we once associated with science fiction. Analysts have access to a plethora of visualization and reporting tools, but considering the vast amount of data businesses collect and limitations of CPUs, end users are forced to design their structures and systems with limitations. Until now. As the cloud toolkit to analyze data has evolved, GPUs have stepped in to massively parallel SQL, visualization and machine learning.
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...