Click here to close now.




















Welcome!

Article

Agile Program Language to Deal with Complex Procedures

Parallel computing with agile program language will be the future

Hadoop is an outstanding parallel computing system whose default parallel computing mode is MapReduce. However, such parallel computing is not specially designed for parallel data computing. Plus, it is not an agile parallel computing program language, the coding efficiency for data computing is relatively low, and this parallel computing is even more difficult to compose the universal algorithm.

Regarding the agile program language and parallel computing, esProc and MapReduce are very similar in function.

Here is an example illustrating how to develop parallel computing in Hadoop with an agile program language. Take the common Group algorithm in MapReduce for example: According to the order data on HDFS, sum up the sales amount of sales person, and seek the top N salesman. In the example code of agile program language, the big data file fileName, fields-to-group groupField, fileds-to-summarizing sumField, syntax-for-summarizing method, and the top-N-list topN are all parameters. In esProc, the corresponding agile program language codes are shown below:

Agile program language code for summary machine:

Agile program language code for node machine:

How to perform the parallel data computing over big data? The most intuitive idea occurs to you would be: Decompose a task into several parallel segments to conduct parallel computing; distribute them to the unit machine to summarize initially; and then further summarize the summary machine for the second time.

From the above codes, we can see that esProc has parallel data computing into two categories: The respective codes for summary machine and node machine. The summary machine is responsible for task scheduling, distributing the task to every parallel computing node in the form of parameter to conduct parallel computing, and ultimately consolidating and summarizing the parallel computing results from parallel computing node machines. The node machines are used to get a segment of the whole data piece as specified by parameters, and then group and summarize the data of this segment.

Then, let's discuss the above-mentioned parallel data computingcodes in details.

Variable definition in parallel computing

As can be seen from the above parallel computing codes, esProc is the codes written in the cells. Each cell is represented with a unique combination of row ID and column ID. The variable is the cell name requiring no definition, for example, in the summary machine code:

n  A2: =40

n  A6: = ["192. 168. 1. 200: 8281","192. 168. 1. 201: 8281","192. 168. 1. 202: 8281","192. 168. 1. 203: 8281"]

A2 and A6 are just two variables representing the number of parallel computing tasks and the list of node machines respectively. The other agile program language codes can reference the variables with the cell name directly. For example, the A3, A4, and A5 all reference A2, and A7 references A6.

Since the variable is itself the cell name, the reference between cells is intuitive and convenient. Obviously, this parallel computing method allows for decomposing a great goal into several simple parallel computing steps, and achieving the ultimate goal by invoking progressively between steps. In the above codes: A8 makes references to A7, A9 references the A8, and A9 references A10. Each step is aimed to solve a small problem in parallel computing. Step by step, the parallel computing goal of this example is ultimately solved.

 

External parameter in parallel computing

 

In esProc, a parameter can be used as the normal parameter or macro. For example, in the agile program language code of summary machine, the fileName, groupField, sumField, and method are all external parameters:

n  A1: =file(fileName). size()

n  A7: =callx("groupSub. dfx",A5,A4,fileName,groupField,sumField,method;A6)

They respectively have the below meanings:

n  filename, the name of big data file, for example, " hdfs: //192. 168. 1. 10/sales. txt"

n  groupField, fields to group, for example: empID

n  sumField, fields to summarize, for example: amount

n  parallel computing method, method for summarizing, for example: sum, min, max, and etc.

If enclosing parameter with ${}, then this enclosed parameter can be used as macro, for example, the piece of agile program language code from summary machine

n  A8: =A7. merge(${gruopField})

n  A9: =A8. groups@o(${gruopField};${method}(Amount): sumAmount)

In this case, the macro will be interpreted as code by esProc to execute, instead of the normal parameters. The translated parallel computing codes can be:

n  A8: =A7. merge(empID)

n  A9: =A8. groups@o(empID;sum(Amount): sumAmount)

 

Macro is one of the dynamic agile program languages. Compared with parameters, macro can be used directly in data computing as codes in a much more flexible way, and reused very easily.

 

Two-dimensional table in A10

Why A10 deserves special discussion? It is because A10 is a two-dimensional table. This type of tables is frequently used in our parallel data computing. There are two columns, representing the character string type and float type respectively. Its structure is like this:

empID

sumAmount

C010010

456734. 12

C010211

443123. 15

C120038

421348. 41

...

...

In this parallel computing solution, the application of two-dimensional table itself indicates that esProc supports the dynamic data type. In other words, we can organize various types of data to one variable, not having to make any extra effort to specify it. The dynamic data type not only saves the effort of defining the data type, but is also convenient for its strong ability in expressing. In using the above two-dimensional table, you may find that using the dynamic data type for big data parallel computing would be more convenient.

Besides the two-dimensional table, the dynamic data type can also be array, for example, A3: =to(A2), A3 is an array whose value is [1,2,3.... . 40]. Needless to say, the simple values are more acceptable. I've verified the data of date, string, and integer types.

The dynamic data type must support the nested data structure. For example, the first member of array is a member, the second member is an array, and the third member is a two-dimensional table. This makes the dynamic data type ever more flexible.

Parallel computing functions for big data

In esProc, there are many functions that are aimed for the big data parallel computing, for example, the A3 in the above-mentioned codes: =to(A2), then it generates an array [1,2,3.... . 40].

Regarding this array, you can directly compute over each of its members without the loop statements, for example, A4: =A3. (long(~*A1/A2)). In this formula, the current member of A3 (represented with "~") will be multiplied with A1, and then divided by A2. Suppose A1=20000000, then the computing result of A4 would be like this: [50000, 100000, 1500000, 2000000... 20000000]

The official name of such function is loop function, which is designed to make the agile program language more agile by reducing the loop statements.

The loop functions can be used to handle whatsoever big data parallel computing; even the two-dimensional tables from the database are also acceptable. For example, A8, A9, A10 - they are loop functions acting on the two dimensional table:

n  A8: =A7. merge(${gruopField})

n  A9: =A8. groups@o(${gruopField};${method}(Amount): sumAmount)

n  A10: =A9. sort(sumAmount: -1). select(#<=10)

Parameters in the loop function

Check out the codes in A10: =A9. sort(sumAmount: -1). select(#<=10)

sort(sumAmount: -1) indicates to sort in reverse order by the sumAmount field of the two-dimensional table of A9. select(#<=10) indicates to filter the previous result of sorting, and filter out the records whose serial numbers (represented with #) are not greater than 10.

The parameters of these two parallel computing functions are not the fixed parameter value but parallel computing method. They can be formulas or functions. The usage of such parallel computing parameter is the parameter formula.

As can be seen here, the parameter formula is also more agile syntax program language. It makes the usage of parameters more flexible. The function calling is more convenient, and the workload of coding can be greatly reduced because of its parallel computing mechanism.

From the above example, we can see that esProc can be used to write Hadoop with an agile program language with parallel computing. By doing so, the code maintenance cost is greatly reduced, and the code reuse and data migration would be ever more convenient and better performance with parallel computing mechanism.

Personal blog: http://datakeyword.blogspot.com/

Web: http://www.raqsoft.com/

More Stories By Jessica Qiu

Jessica Qiu is the editor of Raqsoft. She provides press releases for data computation and data analytics.

Latest Stories
The speed of software changes in growing and large scale rapid-paced DevOps environments presents a challenge for continuous testing. Many organizations struggle to get this right. Practices that work for small scale continuous testing may not be sufficient as the requirements grow. In his session at DevOps Summit, Marc Hornbeek, Sr. Solutions Architect of DevOps continuous test solutions at Spirent Communications, explained the best practices of continuous testing at high scale, which is rele...
"We got started as search consultants. On the services side of the business we have help organizations save time and save money when they hit issues that everyone more or less hits when their data grows," noted Otis Gospodnetić, Founder of Sematext, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
"We've just seen a huge influx of new partners coming into our ecosystem, and partners building unique offerings on top of our API set," explained Seth Bostock, Chief Executive Officer at IndependenceIT, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Learn how to solve the problem of keeping files in sync between multiple Docker containers. In his session at 16th Cloud Expo, Aaron Brongersma, Senior Infrastructure Engineer at Modulus, discussed using rsync, GlusterFS, EBS and Bit Torrent Sync. He broke down the tools that are needed to help create a seamless user experience. In the end, can we have an environment where we can easily move Docker containers, servers, and volumes without impacting our applications? He shared his results so yo...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
Chuck Piluso presented a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. Prior to Secure Infrastructure and Services, Mr. Piluso founded North American Telecommunication Corporation, a facilities-based Competitive Local Exchange Carrier licensed by the Public Service Commission in 10 states, serving as the company's chairman and president from 1997 to 2000. Between 1990 and 1997, Mr. Piluso served as chairman & founder of International Te...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world...
Public Cloud IaaS started its life in the developer and startup communities and has grown rapidly to a $20B+ industry, but it still pales in comparison to how much is spent worldwide on IT: $3.6 trillion. In fact, there are 8.6 million data centers worldwide, the reality is many small and medium sized business have server closets and colocation footprints filled with servers and storage gear. While on-premise environment virtualization may have peaked at 75%, the Public Cloud has lagged in adop...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
How do you securely enable access to your applications in AWS without exposing any attack surfaces? The answer is usually very complicated because application environments morph over time in response to growing requirements from your employee base, your partners and your customers. In his session at @DevOpsSummit, Haseeb Budhani, CEO and Co-founder of Soha, shared five common approaches that DevOps teams follow to secure access to applications deployed in AWS, Azure, etc., and the friction an...
SYS-CON Events announced today that MobiDev, a software development company, will exhibit at the 17th International Cloud Expo®, which will take place November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MobiDev is a software development company with representative offices in Atlanta (US), Sheffield (UK) and Würzburg (Germany); and development centers in Ukraine. Since 2009 it has grown from a small group of passionate engineers and business managers to a full-scale mobi...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of pro...
Digital Transformation is the ultimate goal of cloud computing and related initiatives. The phrase is certainly not a precise one, and as subject to hand-waving and distortion as any high-falutin' terminology in the world of information technology. Yet it is an excellent choice of words to describe what enterprise IT—and by extension, organizations in general—should be working to achieve. Digital Transformation means: handling all the data types being found and created in the organizat...
The Software Defined Data Center (SDDC), which enables organizations to seamlessly run in a hybrid cloud model (public + private cloud), is here to stay. IDC estimates that the software-defined networking market will be valued at $3.7 billion by 2016. Security is a key component and benefit of the SDDC, and offers an opportunity to build security 'from the ground up' and weave it into the environment from day one. In his session at 16th Cloud Expo, Reuven Harrison, CTO and Co-Founder of Tufin,...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...