Welcome!

Article

Agile Program Language to Deal with Complex Procedures

Parallel computing with agile program language will be the future

Hadoop is an outstanding parallel computing system whose default parallel computing mode is MapReduce. However, such parallel computing is not specially designed for parallel data computing. Plus, it is not an agile parallel computing program language, the coding efficiency for data computing is relatively low, and this parallel computing is even more difficult to compose the universal algorithm.

Regarding the agile program language and parallel computing, esProc and MapReduce are very similar in function.

Here is an example illustrating how to develop parallel computing in Hadoop with an agile program language. Take the common Group algorithm in MapReduce for example: According to the order data on HDFS, sum up the sales amount of sales person, and seek the top N salesman. In the example code of agile program language, the big data file fileName, fields-to-group groupField, fileds-to-summarizing sumField, syntax-for-summarizing method, and the top-N-list topN are all parameters. In esProc, the corresponding agile program language codes are shown below:

Agile program language code for summary machine:

Agile program language code for node machine:

How to perform the parallel data computing over big data? The most intuitive idea occurs to you would be: Decompose a task into several parallel segments to conduct parallel computing; distribute them to the unit machine to summarize initially; and then further summarize the summary machine for the second time.

From the above codes, we can see that esProc has parallel data computing into two categories: The respective codes for summary machine and node machine. The summary machine is responsible for task scheduling, distributing the task to every parallel computing node in the form of parameter to conduct parallel computing, and ultimately consolidating and summarizing the parallel computing results from parallel computing node machines. The node machines are used to get a segment of the whole data piece as specified by parameters, and then group and summarize the data of this segment.

Then, let's discuss the above-mentioned parallel data computingcodes in details.

Variable definition in parallel computing

As can be seen from the above parallel computing codes, esProc is the codes written in the cells. Each cell is represented with a unique combination of row ID and column ID. The variable is the cell name requiring no definition, for example, in the summary machine code:

n  A2: =40

n  A6: = ["192. 168. 1. 200: 8281","192. 168. 1. 201: 8281","192. 168. 1. 202: 8281","192. 168. 1. 203: 8281"]

A2 and A6 are just two variables representing the number of parallel computing tasks and the list of node machines respectively. The other agile program language codes can reference the variables with the cell name directly. For example, the A3, A4, and A5 all reference A2, and A7 references A6.

Since the variable is itself the cell name, the reference between cells is intuitive and convenient. Obviously, this parallel computing method allows for decomposing a great goal into several simple parallel computing steps, and achieving the ultimate goal by invoking progressively between steps. In the above codes: A8 makes references to A7, A9 references the A8, and A9 references A10. Each step is aimed to solve a small problem in parallel computing. Step by step, the parallel computing goal of this example is ultimately solved.

 

External parameter in parallel computing

 

In esProc, a parameter can be used as the normal parameter or macro. For example, in the agile program language code of summary machine, the fileName, groupField, sumField, and method are all external parameters:

n  A1: =file(fileName). size()

n  A7: =callx("groupSub. dfx",A5,A4,fileName,groupField,sumField,method;A6)

They respectively have the below meanings:

n  filename, the name of big data file, for example, " hdfs: //192. 168. 1. 10/sales. txt"

n  groupField, fields to group, for example: empID

n  sumField, fields to summarize, for example: amount

n  parallel computing method, method for summarizing, for example: sum, min, max, and etc.

If enclosing parameter with ${}, then this enclosed parameter can be used as macro, for example, the piece of agile program language code from summary machine

n  A8: =A7. merge(${gruopField})

n  A9: =A8. [email protected](${gruopField};${method}(Amount): sumAmount)

In this case, the macro will be interpreted as code by esProc to execute, instead of the normal parameters. The translated parallel computing codes can be:

n  A8: =A7. merge(empID)

n  A9: =A8. [email protected](empID;sum(Amount): sumAmount)

 

Macro is one of the dynamic agile program languages. Compared with parameters, macro can be used directly in data computing as codes in a much more flexible way, and reused very easily.

 

Two-dimensional table in A10

Why A10 deserves special discussion? It is because A10 is a two-dimensional table. This type of tables is frequently used in our parallel data computing. There are two columns, representing the character string type and float type respectively. Its structure is like this:

empID

sumAmount

C010010

456734. 12

C010211

443123. 15

C120038

421348. 41

...

...

In this parallel computing solution, the application of two-dimensional table itself indicates that esProc supports the dynamic data type. In other words, we can organize various types of data to one variable, not having to make any extra effort to specify it. The dynamic data type not only saves the effort of defining the data type, but is also convenient for its strong ability in expressing. In using the above two-dimensional table, you may find that using the dynamic data type for big data parallel computing would be more convenient.

Besides the two-dimensional table, the dynamic data type can also be array, for example, A3: =to(A2), A3 is an array whose value is [1,2,3.... . 40]. Needless to say, the simple values are more acceptable. I've verified the data of date, string, and integer types.

The dynamic data type must support the nested data structure. For example, the first member of array is a member, the second member is an array, and the third member is a two-dimensional table. This makes the dynamic data type ever more flexible.

Parallel computing functions for big data

In esProc, there are many functions that are aimed for the big data parallel computing, for example, the A3 in the above-mentioned codes: =to(A2), then it generates an array [1,2,3.... . 40].

Regarding this array, you can directly compute over each of its members without the loop statements, for example, A4: =A3. (long(~*A1/A2)). In this formula, the current member of A3 (represented with "~") will be multiplied with A1, and then divided by A2. Suppose A1=20000000, then the computing result of A4 would be like this: [50000, 100000, 1500000, 2000000... 20000000]

The official name of such function is loop function, which is designed to make the agile program language more agile by reducing the loop statements.

The loop functions can be used to handle whatsoever big data parallel computing; even the two-dimensional tables from the database are also acceptable. For example, A8, A9, A10 - they are loop functions acting on the two dimensional table:

n  A8: =A7. merge(${gruopField})

n  A9: =A8. [email protected](${gruopField};${method}(Amount): sumAmount)

n  A10: =A9. sort(sumAmount: -1). select(#<=10)

Parameters in the loop function

Check out the codes in A10: =A9. sort(sumAmount: -1). select(#<=10)

sort(sumAmount: -1) indicates to sort in reverse order by the sumAmount field of the two-dimensional table of A9. select(#<=10) indicates to filter the previous result of sorting, and filter out the records whose serial numbers (represented with #) are not greater than 10.

The parameters of these two parallel computing functions are not the fixed parameter value but parallel computing method. They can be formulas or functions. The usage of such parallel computing parameter is the parameter formula.

As can be seen here, the parameter formula is also more agile syntax program language. It makes the usage of parameters more flexible. The function calling is more convenient, and the workload of coding can be greatly reduced because of its parallel computing mechanism.

From the above example, we can see that esProc can be used to write Hadoop with an agile program language with parallel computing. By doing so, the code maintenance cost is greatly reduced, and the code reuse and data migration would be ever more convenient and better performance with parallel computing mechanism.

Personal blog: http://datakeyword.blogspot.com/

Web: http://www.raqsoft.com/

More Stories By Jessica Qiu

Jessica Qiu is the editor of Raqsoft. She provides press releases for data computation and data analytics.

Latest Stories
Security, data privacy, reliability, and regulatory compliance are critical factors when evaluating whether to move business applications from in-house, client-hosted environments to a cloud platform. Quality assurance plays a vital role in ensuring that the appropriate level of risk assessment, verification, and validation takes place to ensure business continuity during the migration to a new cloud platform.
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
StackIQ has announced the release of Stacki 3.2. Stacki is an easy-to-use Linux server provisioning tool. Stacki 3.2 delivers new capabilities that simplify the automation and integration of site-specific requirements. StackIQ is the commercial entity behind this open source bare metal provisioning tool. Since the release of Stacki in June of 2015, the Stacki core team has been focused on making the Community Edition meet the needs of members of the community, adding features and value, while ...
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
"We host and fully manage cloud data services, whether we store, the data, move the data, or run analytics on the data," stated Kamal Shannak, Senior Development Manager, Cloud Data Services, IBM, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
DevOps at Cloud Expo – being held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Am...
With the proliferation of both SQL and NoSQL databases, organizations can now target specific fit-for-purpose database tools for their different application needs regarding scalability, ease of use, ACID support, etc. Platform as a Service offerings make this even easier now, enabling developers to roll out their own database infrastructure in minutes with minimal management overhead. However, this same amount of flexibility also comes with the challenges of picking the right tool, on the right ...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
With over 720 million Internet users and 40–50% CAGR, the Chinese Cloud Computing market has been booming. When talking about cloud computing, what are the Chinese users of cloud thinking about? What is the most powerful force that can push them to make the buying decision? How to tap into them? In his session at 18th Cloud Expo, Yu Hao, CEO and co-founder of SpeedyCloud, answered these questions and discussed the results of SpeedyCloud’s survey.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.