Welcome!

Related Topics: @ThingsExpo, Mobile IoT, Microsoft Cloud, @CloudExpo, @DXWorldExpo, @DevOpsSummit

@ThingsExpo: Article

The Rise of Things

The screens in our lives will slowly start to take a back seat to a model of computing that operates off the context we generate

End-user computing devices have followed a trajectory of faster, smaller, and cheaper for several decades: adding better connectivity, more natural interfaces, but largely remaining a device with a screen and human input device. This model is breaking down as computation and connectivity collide with ordinary real-world things. These things often have existing physical methods of interacting with them that we culturally don't want to change or no interface at all.

I've been involved with devices for much of my professional career, starting with television set top boxes at Microsoft for the better part of a decade, then working in mobile as part of the Android team at Google, and most recently in the Internet of Things at Nest Labs before rejoining Microsoft as part of our platform strategy team. In my current role, one of my focus areas has been to think about so called Internet of Things and what that means for the industry, for Microsoft, and for enterprises and consumers.

It's clear to me that the future of computing lies in these things. The screens in our lives will slowly start to take a back seat to a model of computing that operates off of the context that we generate. In this sense, computing will take a much more active role in our lives but at the same time much more invisible. That said there are substantial challenges in getting from where we are today to this future, and I thought I'd survey those problems and potential solutions.

Connectivity
In the broader Internet, we've started to think about connectivity as a given. The pervasiveness of networks and the consolidation of the industry around cellular standards like LTE and wireless standards like 802.11 mean that, for our computing devices, we are almost always connected and the design of applications has shifted from primarily offline to primarily online to match this.

One of the key challenges in the Internet of Things is that it doesn't fit cleanly into this. The existing set of wireless and cellular standards are wholly unsuited for long longevity battery use - they are designed for devices, like our computer or phone, that are always or frequently connected to a power plug.

A door lock is a good example of a real-world device. It isn't connected to a power plug. While one solution could be to change or charge the batteries in your door lock once a month so that it can use Wi-Fi, when you step back and realize that there are hundreds of these devices in the home, it's clear that this would quickly limit our desire to manage more than a handful of these in our houses.

Rethinking then how we connect these devices is one of the key challenges facing the industry. There are a number of efforts to solve this, including new protocols like Zigbee, but the most promising of these are the efforts to create highly efficient variants of existing protocols like 802.11 with 802.11ah or Bluetooth with Bluetooth Low Energy (now branded Bluetooth Smart). These technologies hold the promise to overcome rapid power consumption in these devices.

In many ways, Bluetooth Smart is already here. As part of the Bluetooth 4.0 spec, it has piggybacked its way into many of the latest Bluetooth chipsets and from a software platform perspective (Windows 8, iOS, and Android platforms all include support for it). Given this, it is starting to become prevalent with the latest wave of devices. It also promises multi-year battery life levels of efficiency and provides an abstraction mechanism for exposing data and control through its characteristics and services. I wouldn't be surprised to see Bluetooth Smart move front and center in 2014 as it gains critical mass as a key way of bridging to these real-world things.

Applications
The simplicity of these devices implies that what it means to be an application will also change. In this world, applications shift from being something with a user interface that runs on our devices and backed by the cloud to a model where an application analyzes the context provided by potentially a large number of these devices. The application will begin to present itself less on a screen and more in the state changes in the real world. These applications will not run on any one of these devices but between them.

Message Based
One potential model for this that we are experimenting with at Microsoft is a messaging-based approach. You can conceptually think about this as "Twitter for devices" where devices and applications communicate using messages through a message broker. The schema for these messages is well known among the principals in the system, enabling applications and devices to communicate that otherwise have no knowledge of each other.

This is a key advantage because devices in this new world are shifting from being consumption and creation devices to devices that provide context and control. A messaging-based approach allows you to leverage the message stream from one of these devices for multiple applications without correspondingly taxing this device with multiple requests for state. For example, a proximity sensor in your office hallway provides very interesting context for a security application for the building but is equally interesting to an application that uses them to make dynamic climate control decisions. A messaging model enables this with one set of state. It also provides a clean archiving and auditing model, enabling you to look back over this data two years later, for instance, when you want to build an occupancy model for your building across all of its proximity sensors.

Management
The quantity and sensitivity of these devices will also mean that we need to rethink how we manage them and their data streams.

We currently manage an increasingly large number of computing devices in our lives, and while application stores have made it easier for us to install and upgrade applications and operating systems, we still spend a significant amount of time managing our devices.

As we increase the number of devices by an order of magnitude, we won't be able to provide this same level of love and care for every device in our lives. These devices are going to need to be largely autonomous. One of the core challenges of Internet of Things will be building the infrastructure to enable this level of autonomy.

Highly Distributed
Our current conception of devices working with services is largely a two-tier model. For many applications that require precise control, the 200ms latency involved in doing a round-trip from a home in Oklahoma to a data center in Virginia where multiple devices' message streams are combined may be too much. This means that applications that require this level of low latency will need to execute much closer to the edge. That said, there are many applications that will require the computational capacity and flexibility that only a larger public or private cloud data center can provide. One of the key challenges we face is providing a single abstraction for developers such that both these classes of application use the same interfaces and the infrastructure is smart enough to satisfy them transparently.

The data streams involved in the Internet of Things are also typically highly sensitive, either in the context that they provide on us or the sensitivity of the equipment that they control. One of the things we must demand as individuals and enterprises is control on what set of data we send to a centralized public cloud versus retain within systems under our control.

I believe these factors will drive a distributed approach to the Internet of Things, where applications move to the data instead the current direction of all of our data moving to the applications in the public cloud. At Microsoft we are currently experimenting with this hybrid approach, where there are several hierarchical tiers of increasing computation and storage as you go toward the cloud. Applications and data in this model flow between these tiers to the appropriate level that balances computational, latency, and privacy concerns. This distributed approach is also another key reason that an immutable messaging-based approach makes sense - it enables you to replicate these message streams between these tiers in the system while applying permission-based controls to filter them down to the messages you are comfortable sharing with another application or computational tier.

Big Data
One thing that is clear is that the volume of data that is generated from these much more numerous devices will be staggering. For example, capturing all of the data from a single car's lifetime in an enterprise fleet requires upwards of 100GB on a relatively spacious once-a-second resolution. For an enterprise like Avis, which has on the order of 150,000 cars, this means managing nearly 15PB of information over the lifetime of one generation of cars.

As an industry we have established batch algorithms and platforms like map/reduce and Hadoop and newer near real-time platforms like Storm to process these large streams of information - but these still require substantial data science and DevOps investments to operate, which put them out of the reach of smaller organizations. A key challenge is making it easier to run data pipelines that operate on the context these devices generate and building abstractions that make them easier to develop for and to use with existing information worker tools.

First Steps
We are at the very beginning of this transformation and are all still trying to get our heads around the right model that solves the problems in this space. Although I've posed a number of potential solutions in this post, you should take these more as strawmen to start a discussion than any concrete recommendation. I'd love to talk with you if working on any problems in this space - feel free to reach out to me at [email protected] or @timpark on Twitter.

More Stories By Tim Park

Tim Park is Director, Platform Strategy at Microsoft. He helps to set the direction of Microsoft platforms internally with a focus on the startup and open source communities. He has over 15 years of application development experience across client and server from work at Microsoft and two startups (WebTV Networks and Nest Labs).

As global advocate for the startup and open source community within Microsoft, Park evangelizes the product needs of startups and open source communities within Microsoft across client and cloud and help these communities understand what Microsoft has to offer them in terms of platforms, programs, and partnerships

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
Sometimes I write a blog just to formulate and organize a point of view, and I think it’s time that I pull together the bounty of excellent information about Machine Learning. This is a topic with which business leaders must become comfortable, especially tomorrow’s business leaders (tip for my next semester University of San Francisco business students!). Machine learning is a key capability that will help organizations drive optimization and monetization opportunities, and there have been some...
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, provided a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to oper...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
"Storpool does only block-level storage so we do one thing extremely well. The growth in data is what drives the move to software-defined technologies in general and software-defined storage," explained Boyan Ivanov, CEO and co-founder at StorPool, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
ChatOps is an emerging topic that has led to the wide availability of integrations between group chat and various other tools/platforms. Currently, HipChat is an extremely powerful collaboration platform due to the various ChatOps integrations that are available. However, DevOps automation can involve orchestration and complex workflows. In his session at @DevOpsSummit at 20th Cloud Expo, Himanshu Chhetri, CTO at Addteq, will cover practical examples and use cases such as self-provisioning infra...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, provided some practical insights on what, how and why when implementing "software-defined" in the datacent...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud host...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.