Welcome!

News Feed Item

Fujitsu Computer System at the Institute for Cosmic Ray Research of the University of Tokyo Commences Operation

Ability to store and perform high-speed analysis of enormous volume of cosmic ray observations will contribute to advances in astrophysics and particle physics research

Tokyo, Jan 24, 2014 - (JCN Newswire) - Fujitsu today announced that it has completed construction of a new computer system for the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo. This x86 cluster system, forming the backbone for ICRR's research on cosmic rays(1), began operation on January 1, 2014.

The new system will store and analyze observational data on cosmic rays, which include protons, gamma rays, and neutrinos, and will be used for ICRR's various domestic and international joint research projects in astrophysics and particle physics.

The computation server is an x86 cluster comprised of 136 FUJITSU Server PRIMERGY CX250 S2 servers, acting in tandem with a high-speed distributed file system of 33 FUJITSU Storage ETERNUS DX80 S2 units running the FEFS(2) file system for speed, reliability, and scalability.

Integer-math performance of the computation server is rated at 96,426 using the SPECint_rate2006 benchmark(3), about ten times the performance of the previous system. It also boasts a file server capacity of 4.4 petabytes, which is roughly 3.2 times more capacity than the previous system, and has a data-transfer speed of 18 GB/s, an approximately 30-fold improvement.

This Fujitsu system will support the KAGRA Project(4) and contribute to advances in other cutting-edge research in astrophysics and particle physics.

Background

ICRR installed its first x86 cluster system in January 1991 as a collaborative research environment for multiple projects in the field of particle physics and cosmic-ray research, conducted primarily by the University of Tokyo. At locations both in and outside of Japan, ICRR has conducted research on high-energy cosmic rays, high-energy gamma rays, and neutrinos; for example, the Super-Kamiokande(5) Project has discovered neutrino oscillations and the Tibet AS-gamma Experiment used cosmic rays to observe the sun's cosmic-ray shadow(6).

Together with expanding its research in the fields of astrophysics and particle physics, ICRR plans to move forward on new experimental projects, such as the KAGRA project, which aims to detect the gravitational wave for the first time in history, and the ground-based gamma ray observatory, CTA(7), which is designed to help understand galactic and extragalactic very-high energy gamma-ray sources.

To meet the needs of these new projects, ICRR required a new computer system that could keep pace with dramatic growth expected in the volume of observational data and of analyses. It would be essential for the new system to boost analytical performance, have a greater storage capacity and to enhance data input and output performance.

To satisfy these requirements, the new system started with new hardware that has approximately ten times the integer-math performance of its predecessor, enough storage capacity to accommodate roughly six years' worth of observational data in cosmic-ray research, and the FEFS scalable file system to sidestep the bottlenecks created by centralized data I/O loads, all of which result in an efficient environment that enables more accurate research.

System Overview

The new system offers two main functions: as a computation server that handles data analysis, and as a file server that stores observational data.

- Computation server

An x86 cluster of 136 PRIMERGY CX250 S2 servers with up-to-date CPUs results in integer-math performance rated at 96,426 using the SPECint_rate2006 benchmark, an approximately tenfold improvement over its predecessor.

- File server

With 10 FUJITSU Server PRIMERGY RX300 S7 servers and 33 ETERNUS DX80 S2 storage units, the system has 4.4 PB of storage capacity and an 18-GB/s data-transfer speed, giving it roughly 3.2 times the storage capacity of its predecessor and about 30 times the data transfer performance. The FEFS scalable file system includes functions that allow storage capacity and bandwidth to be allocated on a per-user and per-group basis, creating a research environment optimized for multiple research projects. The FEFS file system demonstrated its value in Super-Kamiokande's system in 2011.

Additional components of the system include 12 FUJITSU Server PRIMERGY RX200 S8 servers used as a login environment for 450 ICRR researchers, a FUJITSU Storage ETERNUS NR1000 F3220 storage system with 22 TB for networked storage, 15x86 servers that provide e-mail, web, and other network services, a storage unit, and additional network switches.

Future Prospects

The new system will be used in ICRR's projects both in and outside of Japan, and will help illuminate the mechanisms underlying ultra-high energy phenomena such as where and how high-energy cosmic rays originate and accelerate, through deeper, broader studies of the cosmos. Furthermore, inquiries into the properties of neutrinos and into dark matter particles will lead to even further advances in the study of cosmic rays and particle physics. The world's first gravitational wave detections promise to reveal new aspects of the universe, bringing us closer to testing the theory of general relativity, and to probe the beginning of the universe.

Composition of the New System

ICRR will be the primary user of the new system for multiple research projects.

Comment from Kimihiro Okumura, Associate Professor, ICRR, University of Tokyo

"At ICRR, we expect to begin many new research projects. Accordingly, it is anticipated that there will be a significant increase in observational data. To handle the storage and high-speed processing of this data, we needed to upgrade the performance of our computer system. In particular, our goal was to dramatically increase the speed of data transmission, and for a high-performance, highly reliable storage system that meets these requirements, we employed the Fujitsu FEFS file system. We expect the research groups using the computer system to announce many new observational results in the future that generate new insights into hitherto unknown phenomena relating to the universe and cosmic ray particles."

Notes:

(1) Cosmic rays:Nuclei and elementary particles originating both inside and outside the Milky Way galaxy. Where they were made and how they are accelerated to such high energies is still not understood.
(2) FEFS:A high-speed distributed file system that can be shared over as many as 100,000 nodes.
(3) 96,426 using the SPECint_rate2006 benchmark: The estimated value using SPECint_rate2006 as a benchmark of CPU performance.
(4) KAGRA Project:The Large-Scale Cryogenic Gravitational Wave Telescope. Selected in 2012 for the Leading-edge Research Infrastructure Program by the Ministry of Education, Sports, Science, Culture, and Technology, facilities for this ICRR project are currently under construction, and due to go into full operation in 2017-2018.
(5) Super-Kamiokande:A facility consisting of a subterranean pool used as a Cherenkov-ray collector located in Kamioka, Gifu Prefecture, Japan.6 Sun's cosmic-ray shadow:A phenomenon in which cosmic rays (high-energy charged particles that move through space) are deflected by the sun's magnetic field.7 Ground-based gamma ray observatory, CTA:A future ground-based gamma-ray observatory planned to come online in 2020 with 10 times the sensitivity of existing gamma-ray telescopes. The sites will be decided in March 2013, and the construction will start in 2015.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Approximately 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.4 trillion yen (US$47 billion) for the fiscal year ended March 31, 2013 For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:
Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259


Copyright 2014 JCN Newswire. All rights reserved. www.japancorp.net

More Stories By JCN Newswire

Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions need to be truly scalable. Far from it. There are at least six major pain points that companies experience when they try to deploy and run Kubernetes in their complex environments. In this presentation, the speaker will d...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations might...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
When building large, cloud-based applications that operate at a high scale, it's important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. "Fly two mistakes high" is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Le...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more than 24 years of IT Operations experience with a focus on highly-scalable architectures.
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
CI/CD is conceptually straightforward, yet often technically intricate to implement since it requires time and opportunities to develop intimate understanding on not only DevOps processes and operations, but likely product integrations with multiple platforms. This session intends to bridge the gap by offering an intense learning experience while witnessing the processes and operations to build from zero to a simple, yet functional CI/CD pipeline integrated with Jenkins, Github, Docker and Azure...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Dhiraj Sehgal works in Delphix's product and solution organization. His focus has been DevOps, DataOps, private cloud and datacenters customers, technologies and products. He has wealth of experience in cloud focused and virtualized technologies ranging from compute, networking to storage. He has spoken at Cloud Expo for last 3 years now in New York and Santa Clara.
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure ...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.