Welcome!

Related Topics: Containers Expo Blog, Microservices Expo, @CloudExpo, @DXWorldExpo, SDN Journal, @DevOpsSummit

Containers Expo Blog: Article

Edge Virtualization and the MicroCloud

Benefits and Difference from Private and Public Clouds

The benefits of public and private clouds based on virtualization are varied and well known. In 2013, more than 40 percent of enterprises have or are adopting virtualized private clouds in the data center, and another 40 percent are evaluating virtualization solutions. Nevertheless, less than 10 years ago, the number of enterprises doing any kind of private cloud virtualization was almost nonexistent.

Some of the benefits driving this rapid adoption in the enterprise, apply equally well for small-to-medium businesses (SMBs) and the edge. These benefits include:

  • Application compartmentalization - containment within the application's own O/S processor and I/O space (prevents single applications from consuming a platform's resources or affecting other applications due to problems)
  • Simplified security and quality of service (QoS) policies - administration across sites, applications, and networks
  • Automated application integration and orchestration - simplification of installation, upgrades, and migrations without platform reboots or network downtime
  • Better scaling and platform optimization - scale is simple addition
  • Improved survivability and performance - treat multiple platforms as one system

For the purposes of this article, "edge virtualization" is described as the MicroCloud - to distinguish it from "public" and "private" clouds typically associated with the data center. The following are distinctive attributes of the edge MicroCloud (versus private and public clouds).

  • It is located at the WAN interface of an SMB (typically the Internet) or a remote site in a larger enterprise (typically MPLS)
  • Network bandwidth is typically constrained
  • The south side of the edge (facing the LAN) is typically less than 200 devices/users
  • Policy (security, QoS, NAC/Network Access Control) is typically required
  • Firewall, NAT and subnet functionality are required
  • The "edge" is typically price and operationally constrained
  • The edge typically applies not only to network functionality but to edge applications as well (e.g., session border control, Wi-Fi controller management, etc.)

It is expected that edge virtualization and software defined networks (SDNs) will completely replace purpose-built appliances and integrated applications at the edge. These are all compelling reasons behind the move to virtualization in the data center, and these same attributes apply equally to the SMB and enterprise edge. When considering a transition to edge virtualization and SDN, you need to look for a solution that provides both powerful networking and orchestration capabilities.

The table below illustrates some of the benefits of virtualization at the edge and is followed by a brief description of each.

Edge Virtualization Feature Example: "Application Compartmentalization"

Virtualization Feature Overview:
One of the advantages of running on a virtual platform, versus adding an application on top of an existing O/S, is the fact that the application can run on the O/S it is optimized for, with resources dedicated for its use. This becomes especially important when the applications are deep and complete, such as with a session border controller or a voice IP key system, particularly when these might need to run on the same platform together or with another complex-type network application.

Example Description:
The following diagram illustrates one of the primary benefits of virtualization: the ability to allow an application to run in its own optimized O/S space with efficiently apportioned resources.

In this diagram, the "Orchestration and Network Manager VM" manages the configuration of the SBC VM as it relates to the disk, network, processor, and RAM. Any additional applications are then appropriately plumbed with proper resource management. This resource allocation is very difficult to do in the absence of virtualization, inasmuch as applications tend to compete with one another in the "user space" of the O/S.

Benefits:
Virtualization allows for quick integration of applications within the same platform. With proper orchestration it is possible to balance application resource needs with platform capabilities. It is not necessary to fine-tune applications to a host O/S, as is done with traditional edge devices.

Edge Virtualization Feature Example: "Simplified Policy Management"

Virtualization Feature Overview:
Policy management is one of the most complex components of any networking application. It becomes particularly complex at the edge when policy needs to be applied across platforms and geographies. Examples include "guest" and "corporate" policies-particularly for wireless access. Policy is typically used to define/limit/grant access to particular resources, such as bandwidth or data for users or devices. The complexity of policy is usually prohibitive in terms of use. Virtualization with proper orchestration greatly simplifies this required but very complex component.

Example Description:
The following diagram illustrates the simplification of policy management across sites. Superimposed upon a real site/policy map are guide blocks that emphasize sites (in columns) and policy (rows). The blue guide block emphasizes where policy (and routing) is set.

Benefits:
Policy management for security and QoS is typically complex and prone to error. Virtualization with proper orchestration greatly simplifies this critical component while improving upon the specific attributes of security and QoS.

Edge Virtualization Feature Example: "Automatic App Integration & Orchestration"

Virtualization Feature Overview:
Virtualization orchestration creates several important benefits. One of the most important of these is the ability to perform automatic integration of applications with respect to the network (automatic wiring) and its associated QoS and security policies. In a traditional implementation without the benefit of virtualization orchestration, integration tends to be fraught with errors, particularly when applied across geographies and between applications. Additionally, updates and changes in a virtual environment can usually be orchestrated as a simple switch from a running VM to the upgraded VM, whereas a traditional environment will typically require a platform reboot-thus causing all applications to lose connectivity for a period of time.

Example Description:
The following diagram illustrates the edge architecture that yields automatic app integration with virtual wiring.

Each of the colored lines represents a virtual wire (circled in red). Orchestration automatically connects these lines to the appropriate virtual switch, interface, or application.

Applications are, in turn, instantiated, configured, and plumbed by the same orchestration software. Each VM will run in its own operating system and be allocated appropriate resources. Additionally, the host hypervisor O/S and each of the VMs are isolated from each other and the WAN and LAN networks by the "network flow manager." This isolation provides both a level of security and an improvement of application upgrades/configurations.

Benefits:
Virtualization and orchestration eliminate many of the problems associated with traditional all-in-one appliances that attempt to run applications that must interact with each other and the network. Configuration mistakes are avoided, and upgrades happen with no downtime.

Edge Virtualization Feature Example: "Scalability and Optimization"

Virtualization Feature Overview:
Traditional methods of application integration usually require platform replacements in order to increase in scale. Additionally, platform optimization tends to be dependent upon the most computing-intensive application, making it difficult to balance between size and number of applications. On the other hand, virtualization has demonstrated excellent scalability and optimization value through simple addition. In fact, the trend is to reduce the size and cost of the platform, allowing more linear growth and optimization.

Example Description:
The following diagram illustrates the evolution of a typical edge configuration towards smaller and less costly virtual platforms that can provide scalable and optimized application and network support.

In order to scale, once a single platform has maximized the number of applications that it runs, it is only necessary to add a second (or third, etc.) platform. This will hold true for most full-size applications, such as web services, databases, file systems, etc., that can inherently take advantage of multiple instances. Furthermore, it is possible to move VMs from one platform to the next in order to optimize the resources of a particular application on a particular platform.

Benefits:
Virtualization in the data center has demonstrated real-world scalability and optimization for applications much more effectively than traditional dedicated platforms. These same attributes will also hold true for edge virtualization.

Edge Virtualization Feature Example: "Survivability and Performance"

Virtualization Feature Overview:
Virtualization not only yields a performance benefit, but also greatly simplifies and improves survivability and distribution (yielding further performance benefits). Survivability in a virtual environment means that even if any application(s) fail(s), the

hypervisor operating system, virtual machines, or other applications do not fail. Applications can be "spun" up in sub-second times when events cause an application, platform, or site failure. Additionally, because of network virtualization, these applications can be distributed across geographies both from a survivability and performance perspective.

Example Description:
From a performance perspective, traditional edge solutions have relied on proprietary and purpose-built hardware, resulting in high costs and underperformance. On the very low end of traditional edge solutions, most hardware is ARM-based, with minimal memory and storage. These solutions typically are purpose-built and rely on open-source applications with a small amount of software integration. Consequently, they are almost never capable of supporting the required performance of commercial or high-end applications. Additionally, because of their singular focus, they tend to be stand-alone devices incapable of surviving any type of failure. Two concrete examples running on the same platform are SDN-based networking and elastic cloud backup. The following figure represents these examples:

In the diagram, there are several points of survivability: 1) loss of connectivity to the data center, 2) platform loss, and 3) primary network loss. In each case the survivability components allow operations to continue, albeit at a reduced level (e.g., LTE speeds vs. Ethernet, routing with no updates, etc.).

Benefits:
Virtualization (platform and network) yields multiple levels of survivability and performance that are difficult to attain with traditional dedicated platforms.

Conclusion
Edge virtualization or MicroClouds can provide enterprises and SMBs with efficiencies that legacy, purpose-built appliances cannot even begin to achieve. The better management of application resources, simpler policy administration, automated application integration and orchestration, and improved scalability, survivability, and performance all lead to significant and measurable cost savings.

Managed service providers and distributed enterprises would both benefit from deploying an edge virtualization strategy. In an example use case scenario of 50 sites where MicroClouds were deployed, there was a 3:1 up-front CAPEX savings and a 5:1 average OPEX savings over 3 years.

Edge virtualization and SDN solutions are here today and ready for production deployments. Integrating them into today's enterprise data centers and SMB environments will establish a foundation for a more efficient, optimized and manageable network over the long term.

More Stories By Richard Platt

Richard Platt is CTO and vice president of engineering at Netsocket, where he is responsible for establishing the company’s technical vision and leading all aspects of its technology development. He has over 25 years experience defining, developing, and commercializing emerging technologies in both start-up and Fortune 100 environments.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
"Storpool does only block-level storage so we do one thing extremely well. The growth in data is what drives the move to software-defined technologies in general and software-defined storage," explained Boyan Ivanov, CEO and co-founder at StorPool, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
ChatOps is an emerging topic that has led to the wide availability of integrations between group chat and various other tools/platforms. Currently, HipChat is an extremely powerful collaboration platform due to the various ChatOps integrations that are available. However, DevOps automation can involve orchestration and complex workflows. In his session at @DevOpsSummit at 20th Cloud Expo, Himanshu Chhetri, CTO at Addteq, will cover practical examples and use cases such as self-provisioning infra...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, provided some practical insights on what, how and why when implementing "software-defined" in the datacent...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud host...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
The need for greater agility and scalability necessitated the digital transformation in the form of following equation: monolithic to microservices to serverless architecture (FaaS). To keep up with the cut-throat competition, the organisations need to update their technology stack to make software development their differentiating factor. Thus microservices architecture emerged as a potential method to provide development teams with greater flexibility and other advantages, such as the abili...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.