Welcome!

Related Topics: @BigDataExpo, Java IoT, Microservices Expo, Microsoft Cloud

@BigDataExpo: Article

Detecting Anomalies that Matter!

Like needles in a haystack

As Netuitive's Chief Data Scientist, I am fortunate to work closely with some of the worlds' largest banks, telcos, and eCommerce companies. Increasingly the executives that I speak with at these companies are no longer focused on just detecting application performance anomalies - they want to understand the impact this has on the business.  For example - "is the current slowdown in the payment service impacting sales?"

You can think of it as detecting IT operations anomalies that really matter - but this is easier said than done.

Like Needles in a Haystack
When it comes to IT analytics, there is a general notion that the more monitoring data you are able to consume, analyze, and correlate, the more accurate your results will be. Just pile all that infrastructure, application performance, and business metric data together and good things are bound to happen, right?

Larger organizations typically have access to voluminous data being generated from dozens of monitoring tools that are tracking thousands of infrastructure and application components.  At the same time, these companies often track hundreds of business metrics using a totally different set of tools.

The problem is that, collectively, these monitoring tools do not communicate with each other.  Not only is it hard to get holistic visibility into the performance and health of a particular business service, it's even harder to discover complex anomalies that have business impact.

Anomalies are Like Snowflakes
Compounding the challenge is the fact that no two anomalies are alike.  Anomalies that matter have multiple facets.  They reflect a composite behavior of many layers of interacting and inter-dependent components.  Additionally, they can be cleverly disguised or hidden in a haze of visible but insignificant noise.  No matter how many graphs and charts you display on the largest LCD monitor you can find - the type of scalable real-time analysis required to find and expose what's important is humanly impossible.

Enter IT Operations Analytics
Analytics such as statistical machine learning allow us to understand the "normal" behavior of each resource we are tracking - be it a single IT component, web service, application, or business process. Additional algorithms help us find patterns and correlations between the thousands of IT and business metrics that matter in a critical service.

The Shift Towards IT Operations Analytics is Already Happening
This is not about the future.  It's about what companies are doing today.

Several years ago thought-leading enterprises (primarily large banks with critical revenue driving services) began experimenting with a new breed of IT analytics platform. These companies' electronic and web facing businesses had so much revenue (and reputation) at stake that they needed to find the anomalies that matter -- the ones that were truly indicative of current or impending problems.

Starting with an almost "blank slate", these forward-thinking companies began developing open IT analytics platforms that easily integrated any type of data source in real time to provide a comprehensive view of patterns and relationships between IT infrastructure and business service performance. This was only possible with technologies that leveraged sophisticated data integration, knowledge modeling, and analytics to discover and capture the unique behavior of complex business services.  Anything less would fail, because, like snowflakes, no two anomalies are alike.

The Continuous Need for Algorithm Research
The online banking system at one bank is different than the online system at the next bank.  And the transaction slowdown that occurred last week may have a totally different root cause than the one two months ago.  Even more interesting are external factors such as seasonality and its effects on demand.  For example, payment companies see increased workload around holidays such as Thanksgiving and Mother's Day whereas gaming/betting companies' demand is driven more by factors such as the NFL Playoffs or the World Series.

For this reason, analytics research is an ongoing endeavor at Netuitive - part driven by customer needs and in part by advances in technology.   Once Netuitive technology is installed in an enterprise and integrating data collected across multiple layers in the service stack, behavior learning begins immediately.  As time passes, the statistical algorithms have more observations to feed their results and this leads to increasing confidence in both anomalies detected and proactive forecasts.  Additionally, customer domain knowledge can be layered in to Netuitive's real-time analysis in the form of knowledge bases and supervised learning algorithms.  The Research Group at Netuitive works closely with our Professional Services Group as well as directly with customers to regularly review actual delivered alarm quality to tune the algorithms that we have as well as identify new algorithms that would deliver greater value in an actionable timeframe.

Since Netuitive's software architecture allows for "pluggable" algorithms, we can incrementally introduce new analytics capabilities easily, at first in an experimental or laboratory setting and ultimately, once verified, into production.

The IT operations management market has matured over the past two decades to the point that most critical components are well instrumented.  The data is there and mainstream IT organizations (not just visionary early adopters) realize that analytics deliver measurable and tangible value.   My vision and challenge is to get our platform to the point where customers can easily customize the algorithms on their own, as their needs and IT infrastructure evolve over time.  This is where platforms need to get to because of the endless variety of ways that enterprises must discover and remediate "anomalies that matter".

Stay tuned.  In an upcoming blog I will drill down on some specific industry examples of algorithms we developed as part of some large enterprise IT analytic platform solutions.

More Stories By Elizabeth A. Nichols, Ph.D

As Chief Data Scientist for Netuitive, Elizabeth A. Nichols, Ph.D. leads development of algorithms, models, and analytics. This includes both enriching the company’s current portfolio as well as developing new analytics to support current and emerging technologies and IT-dependent business services across multiple industry sectors.

Previously, Dr. Nichols co-founded PlexLogic, a provider of open analytics services for quantitative data analysis, risk modeling and data visualization. In her role as CTO and Chief Data Scientist, she developed a cloud platform for collecting, cleansing and correlating data from heterogeneous sources, computing metrics, applying algorithms and models, and visualizing results. Prior to Plexlogic, Dr. Nichols co-founded and served as CTO for ClearPoint Metrics, a security metrics software platform that was eventually sold to nCircle. Prior to ClearPoint Metrics, Dr. Nichols served in technical advisory and leadership positions at CA, Legent Corp, BladeLogic, and Digital Analysis Corp. At CA, she was VP of Research and Development and Lead Architect for agent instrumentation and analytics for CA Unicenter. After receiving a Ph.D. in Mathematics from Duke University, she began her career as an operations research analyst developing war gaming models for the US Army.

Latest Stories
"Qosmos has launched L7Viewer, a network traffic analysis tool, so it analyzes all the traffic between the virtual machine and the data center and the virtual machine and the external world," stated Sebastien Synold, Product Line Manager at Qosmos, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, will share examples from a wide range of industries – includin...
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbraith, a principal engineer at HPE, discussed how to build a fully functional Kubernetes cluster on a number of virtual machines or bare-metal hosts. Also included will be a brief demonstration of running a Galera MyS...
The WebRTC Summit New York, to be held June 6-8, 2017, at the Javits Center in New York City, NY, announces that its Call for Papers is now open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 20th International Cloud Expo and @ThingsExpo. WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web co...
"We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"We analyze the video streaming experience. We are gathering the user behavior in real time from the user devices and we analyze how users experience the video streaming," explained Eric Kim, Founder and CEO at Streamlyzer, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"This is specifically designed to accommodate some of the needs for high availability and failover in a network managed system for the major Korean corporations," stated Thomas Masters, Managing Director at InfranicsUSA, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Enterprise IT has been in the era of Hybrid Cloud for some time now. But it seems most conversations about Hybrid are focused on integrating AWS, Microsoft Azure, or Google ECM into existing on-premises systems. Where is all the Private Cloud? What do technology providers need to do to make their offerings more compelling? How should enterprise IT executives and buyers define their focus, needs, and roadmap, and communicate that clearly to the providers?
"We are an all-flash array storage provider but our focus has been on VM-aware storage specifically for virtualized applications," stated Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"We are a leader in the market space called network visibility solutions - it enables monitoring tools and Big Data analysis to access the data and be able to see the performance," explained Shay Morag, VP of Sales and Marketing at Niagara Networks, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
According to Forrester Research, every business will become either a digital predator or digital prey by 2020. To avoid demise, organizations must rapidly create new sources of value in their end-to-end customer experiences. True digital predators also must break down information and process silos and extend digital transformation initiatives to empower employees with the digital resources needed to win, serve, and retain customers.
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...