Welcome!

News Feed Item

A*STAR Showcases Innovations for Sustainable Aviation



A*STAR's exhibition at Singapore Airshow 2014 highlights its R&D initiatives in aviation

Singapore, Feb 13, 2014 - (ACN Newswire) - The Agency for Science, Technology and Research (A*STAR) will share its latest R&D initiatives for sustainable aviation at the Singapore Airshow 2014 at Changi Exhibition Centre, Booth D35 from 11th to 16th February. The innovations on display will focus on four key areas: aviation remanufacturing technology; analytics; aviation communications; and Non-Destructive Inspection (NDI) for composites and structures.

The focus on R&D comes at a crucial juncture when there is a need to cope with the industry's demands. With approximately 3.3 billion people expected to fly commercially by 2014, and 38 million tonnes of cargo to be carried the same year[1], these research developments in manufacturing efficiencies and maintenance processes will be critical for safe and sustainable air travel and cargo services, and big data technologies will be key for more efficient operations and handling passenger movement.

- Showcase of New Research Capabilities for the Growth of Global Aerospace and Aviation Industry at Airshow 2014

The A*STAR showcase at the Airshow provides highlights of the multi-disciplinary capabilities available across the Science and Engineering research institutes, which the Aerospace Programme leverages on to address broad and complex range of interests of its Research Consortium members for a sustainable future.

The cutting-edge innovations on display will focus on improving manufacturing, maintenance and communication for sustainable aviation. Two of the highlights that will be showcased at the Airshow are:

* Laser aided additive manufacturing (LAAM): This additive manufacturing process, also known as 3D printing, uses high energy laser beams to melt additive materials to repair damaged parts or fabricate fully dense components. The process can help shorten manufacturing time and reduce material waste significantly.

* Data Analytics: A*STAR will showcase its award-winning flight prediction algorithm which, in a recent international competition, utilised data analytics to estimate flight arrivals nearly 40 percent better than the current industry estimates. This can result in greater efficiency for airlines, with huge potential savings in fuel and crew costs and improved convenience for passengers. Other data analytics innovations from A*STAR include a cutting-edge sensor network system and analytics platform that can accurately predict equipment failure; and a video analytics system with real-time human crowd detection, cross-camera tracking, event detection and semantic mining system for information discoveries.

- Multi-disciplinary Research by the A*STAR Aerospace Programme for a Sustainable Future in Aviation

Since 2007, the A*STAR Aerospace Programme (AP) has undertaken and completed more than 50 multi-disciplinary projects for the AP Consortium. These include projects targeted at further development of sustainability solutions for greater aircraft efficiency:

* The introduction of a superhydrophobic coating can improve aircraft operations and reduce potential mechanical damages to the aircraft. The coating can repel water on the skin of aircraft to protect the surface from condensation, friction, corrosion and mould. This will reduce drag and improve aerodynamics, leading to better aircraft performances and fuel savings. This technology will also be further developed by the Aerospace Programme into an ice-phobic coating to reduce the formation of ice.

* Through modelling, A*STAR researchers are better able to understand the penetration mechanism of fluid and moisture into composite material, and their effect on structural integrity and surface adhesion property. This is significant as today's aircraft structures are commonly made up of composite materials to reduce the weight of the aircraft in order to be more fuel efficient. Understanding the characteristics of composites when exposed to extensive water penetration will enable users to take preventive and corrective measures under Maintenance, Repair and Overhaul (MRO) activities.

Mr. Tay Kok Khiang, Chairman of the A*STAR Aerospace Programme, said, "We are honoured to have many of the leading Original Equipment Manufacturers and Services companies in aviation within our Consortium. Over the years, since the Aerospace Programme was formed in 2007, our researchers within SERC have proven that they have the knowledge and capabilities to help our Consortium members better understand their areas of interests and come up with innovative solutions that enable our members to do more for their current and future products. We hope that our contributions to the aviation industry will benefit our members, many of whom have companies in Singapore, and further enhance the potential of Singapore as an important aviation hub."

Dr. Tan Geok Leng, Executive Director of A*STAR's Science and Engineering Research Council, said, "With the explosive growth in air travel, the ability to exploit science and technology will prove critical for industry players to remain at the forefront of aviation. Public-private collaborative platforms, such as the A*STAR Aerospace Programme, will enable industry players to leverage on A*STAR's cross-disciplinary research capabilities for competitive advantage."

Mr Bill Lyons, Director of Global Technology for Boeing, said, "Boeing is a founding member of the A*STAR Aerospace Programme Consortium, and we've been an active partner in collaboration of aerospace technology development. We have been successful in transitioning the technologies developed by the consortium to our manufacturing facilities with support from the A*STAR research institutions. We look forward to strengthen our relationship with A*STAR AP and its members and expand our mutually beneficial partnership with A*STAR in Singapore."

The current members of the AP Consortium include leading commercial airliner manufacturers (Airbus, Boeing, Bombardier and Embraer); large engines manufacturers (GE, Pratt & Whitney and Rolls-Royce); components, systems and specialist material OEMs (Hexcel, Honeywell, Panasonic and SAFRAN); key players in aviation in Singapore (DSTA, SIA Engineering and ST Aerospace) and local SMEs such as Addvalue Technologies, Flight Focus and TruMarine.

List of Aviation Technologies Showcase @ A*STAR Booth

- Aviation Theme 1: Aviation Communications

1. Electromagnetic Compatibility (EMC) Tool for Antennas on Airplane

The electromagnetic interference (EMI) from transmitters / emitters can be a serious problem for flight and munition safety as it disrupts the performance of a circuit, causing loss of functionality and inadvertent activation of systems. An advanced simulation technology is developed to solve the problem of evaluating computing between two or more integrated sensor systems onboard electrically large aircrafts. The developed simulation technology allows for much faster analysis of sensors on aircrafts and help engineers identify proper locations for the installation of new sensors on aircraft.

2. Software Defined Radio

Software Defined Radio (SDR) architecture integrates Policy-based Management to create a platform that adapts automatically to changing conditions. SDR technology replaces traditional hardware-based radio signal processing tasks with software components while policy-based management allows configuration and management decisions to be autonomously made by a computer system based on a set of rules specified by the operator. In a space and weight constrained application such as in an aircraft cabin, a single unit of the platform can be used to provide wireless services to passengers using diverse access technologies such as Global System for Mobile Communications (GSM), Code division multiple access (CDMA), wireless local area network (WLAN) and more, keeping them connected throughout the flight.

3. Disruption Tolerant Networking

Disruption-tolerant networking (DTN), a new paradigm for message routing in intermittently-connected networks, can be employed to mitigate these challenges and enable reliable communications in airborne networks.

- Aviation Theme 2: Non destructive inspection (NDI) for Composites & Structures

Non destructive inspection (NDI) can greatly benefit maintenance, repairs and overhaul (MRO) applications for timely detection of defects that can pose a threat to aircraft safety. Some of the NDI techniques include:

1. Detection system for water ingress (water leakage or seepage)

Inspection of water ingress, or the leakage of water, is made easier with a simple and sensitive process that will allow better strategies in preventive maintenance of the aircraft. With this system, it will act as a tool for fast and reliable detection of water ingress along the rivets/bolts in composite parts.

2. Structured heating thermography

Structured heating can highlight low contrast defects, also referred to a degradation of Fiber Reinforced Plastics (FRPs), now in a more predictable manner. This is an improvement from the lack of reliable tools that does not usually detect such defects non-destructively.

3. Millimeter Wave Inspection

Early detection of corrosion is crucial to prevent relatively large area from being rehabilitated, which may require significant time, resources, and downtime. The initiation of corrosion is preceded by the presence of corrosion precursor pittings. Detection of precursor pittings yields information about the susceptibility to corrosion initiation.

A millimeter wave signal (30GHz to 300GHz) is introduced through a waveguide/antenna onto a sample under test. The signal is reflected back from any slight variation in thickness and/or dielectric coatings such as paint and corrosion, thereby revealing the presence and severity of a corroded region.

4. Piezoelectric Sensors

Piezoelectric sensors are not only able to listen to the occurrence of structural failures and achieve real-time monitoring for structural damages, but also can realize mechanical energy harvesting for powering up wireless signal transmission. Piezoelectric ultrasonic NDT can offer the ability to detect physical flaws with a large penetration depth.

- Aviation Theme 3: Aviation Remanufacturing Technology

1. Remanufacturing of Engine Components

Engine Components can now be remanufactured through an interdisciplinary approach using state-of-the-art technology. This can enhance capability, and expand the range of repairable parts, whilst meeting stringent environmental regulations.

Successful remanufacturing of complex 3D components requires a host of processes, including disassembly, cleaning, inspection for defects, digitising of part geometry, adaptive repair and machining, and surface finishing.

2. Laser Aided Additive Manufacturing for Aerospace Applications

Using lasers, additive materials in the form of wire or powder can be melted to build a part, layer by layer. This additive manufacturing process known as Laser Aided Additive Manufacturing is capable of repairing damaged parts, as well as directly fabricating fully dense components with the aid of CAD/CAM. The process can reduce the manufacturing time and the material waste, reuse the materials, reduce the down time and heavy capital expenditures for the replacement with new parts.

3. Stripping of Protective Coating on blades using Laser

Environmentally-friendly laser can be used to strip off Thermal Barrier Coating (TBC) and Bond Layer (BL) from aero engine components on platform and around cooling holes rather than using corrosive agents. This technology uses a robotic laser system with easy programming methodology for automated and productive stripping of entire single vane.

- Aviation Theme 4: Analytics

(I) Image Analytics

1. "De-Haze" Software

With the "De-haze" software, images of outdoor scenes would no longer be compromised by haze, fog and smoke, in terms of contrast and colour fidelity. The haze removal technology effectively transforms the hazy image to a sharper and clearer image.

(II) Data Analytics

2. Boosting Productivity with Predictive Monitoring

Equipment failures and operational hiccups can be life-threatening in the aviation industry and any emergency maintenance of such equipment failures is often very costly and unproductive. This system consists of a sensor network and an analytics platform to accurately predict equipment failure from real-time updates of the equipment's condition.

3. Flight Prediction

The flight prediction algorithm won first place at the GE Flight Quest Competition for producing flight arrival estimates that were 40% better than the industry standard. This was achieved by creative extraction of features and the application of Machine Learning techniques that automatically captured the complex interaction between weather and congestion factors. This can help airlines better predict flight timings which would help reduce cost, provide greater efficiency and increase convenience for passengers.

4. Understanding Events with Video Analytics

Video Analytics makes use of machines to understand events, and will only sound the alert when necessary. The system is a visualization tool with real-time human crowd detection, cross-camera tracking, event detection and semantic mining system for information discoveries.

[1] Source: IATA Forecast Press Release 2011: http://www.iata.org/pressroom/pr/pages/2011-02-14-02.aspx

About A*STAR

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories. Please visit www.a-star.edu.sg.

Source: A*STAR

Contact:
Ms. Fazilah Latif 
Officer, Corporate Communications
DID: +65 6419 6529 
Mobile: +65 9009 1973
Email: [email protected]
 
Ms. Doris Yang
Senior Officer, Corporate Communications
DID: +65 6419 6525 
Mobile: +65 9367 5336
Email: [email protected]




Copyright 2014 ACN Newswire. All rights reserved.

More Stories By ACN Newswire

Copyright 2008 ACN Newswire. All rights reserved. Republication or redistribution of ACN Newswire content is expressly prohibited without the prior written consent of ACN Newswire. ACN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
SYS-CON Events announced today the Docker Meets Kubernetes – Intro into the Kubernetes World, being held June 9, 2016, in conjunction with 18th Cloud Expo | @ThingsExpo, at the Javits Center in New York, NY. Register for 'Docker Meets Kubernetes Workshop' Here! This workshop led by Sebastian Scheele, co-founder of Loodse, introduces participants to Kubernetes (container orchestration). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, participants learn ...
See storage differently! Storage performance problems have only gotten worse and harder to solve as applications have become largely virtualized and moved to a cloud-based infrastructure. Storage performance in a virtualized environment is not just about IOPS, it is about how well that potential performance is guaranteed to individual VMs for these apps as the number of VMs keep going up real time. In his session at 18th Cloud Expo, Dhiraj Sehgal, in product and marketing at Tintri, will discu...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
Peak 10, Inc., has announced the implementation of IT service management, a business process alignment initiative based on the widely adopted Information Technology Infrastructure Library (ITIL) framework. The implementation of IT service management enhances Peak 10’s current service-minded approach to IT delivery by propelling the company to deliver higher levels of personalized and prompt service. The majority of Peak 10’s operations employees have been trained and certified in the ITIL frame...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists will dis...
trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vice president of product management, IoT solutions at GlobalSign, will teach IoT developers how t...
A critical component of any IoT project is the back-end systems that capture data from remote IoT devices and structure it in a way to answer useful questions. Traditional data warehouse and analytical systems are mature technologies that can be used to handle large data sets, but they are not well suited to many IoT-scale products and the need for real-time insights. At Fuze, we have developed a backend platform as part of our mobility-oriented cloud service that uses Big Data-based approache...
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...