Welcome!

News Feed Item

Renesas Electronics Develops Industry’s First 28nm Embedded Flash Memory Technology for Microcontrollers

Renesas Electronics Corporation (TSE: 6723), a premier provider of advanced semiconductor solutions, today announced that it has developed the industry's first 28-nanometer (nm) flash memory intellectual property (IP) for microcontrollers (MCUs) using a 28 nm process technology.

As engines move to even lower fuel consumption, new control mechanisms are now required to deal with the introduction of new combustion methods and further system evolution associated with downsizing. High-speed real-time processing, such as dynamically switching between multiple control algorithms according to the load in response to feedback from various sensors, will become necessary, and a performance level three to five times that will be required in automotive MCUs. Furthermore, while the number of ECUs is increasing, if we consider the limitations on power supply, such as the practice of stopping the engine when the car is temporarily stopped, it is clear that while performance must be improved, it is also necessary to reduce power consumption.

Also, due to issues such as the increasing complexity of integrating multiple MCUs and the control algorithms themselves, flash MCUs will require an increase in on-chip flash memory capacity to about three times that of previous devices. At the same time, since it is now extremely important to increase the safety and security of automotive control and of the requirements on automotive MCUs, high-level functional safety has become critical. A new many-core architecture is now required for the inclusion of multiple dual processors operating in lock step, and for the integration of a variety of functions. In low fuel consumption engines, the processing accelerators for the injection pulse generation and signal processing required for high-precision combustion control, knock control, and cooperative control with the driving support systems that will lead to autonomous cars are now required and thus a higher integration density, that is, moving to a finer feature size fabrication process, is now indispensable.

Renesas’ current 40 nm process technology supports up to 8MB of on-chip flash memory for MCUs. However, on-chip MCU flash memory modules as large as 10 MB will be required to support the increasing sophistication of the control systems implemented with MCUs.

Moving to smaller process geometry is one approach to increasing the integration density of the flash memory and peripheral functions that are integrated on a single chip. Single-chip MCUs developed using Renesas’ new 28 nm process technology will be able to support a maximum capacity of over 16MB flash memory on chip.

Renesas has been moving forward with prototypes in the 28 nm process, which features even finer features than the existing 40 nm process. In the latest prototype chip, Renesas was able to achieve a high-speed readout operating clock frequency of 160 MHz, a data retention time of 20 years, and a rewrite cycle count of 250,000 cycles (for data storage). Although it becomes increasingly difficult to maintain flash memory performance and reliability as feature sizes are reduced, Renesas succeeded in creating this prototype by taking advantage of the scalability of the MONOS (Note 1) structure flash memory, which made it possible to increase both the capacity and the performance of the memory integrated in flash MCUs. Renesas’ MONOS technology for MCUs has achieved a superb track record through the company’s 40 nm process generation.

The new 28nm flash memory IP for MCUs offers design benefits for automotive and other industries with high-reliability criteria. For example, in the ADAS (advanced driving assistant system) field, the increased memory capacity and performance will make it possible to support complex data processing for 3D radar to increase the safety of automotive. Furthermore, in the power train area, this new technology will enable an even finer-grained control of fuel injection and ignition through increases in the amount of mapping data used for fuel injection and increased data processing capability. This will contribute not only to increased fuel efficiency, but also to reduced environmental and energy challenges. Additionally, by adopting a 28 nm process, it will be possible to reduce current consumption.

Renesas will accelerate their development of 28 nm process automotive flash MCUs for commercial release to support needs for high-speed readout, high reliability, and larger capacities – a maximum capacity of over 16 MB.

Renesas already leads the industry in mass producing flash MCUs and has contributed to the wider adoption of flash MCUs in a wide range of industries, including automotive, consumer, and industrial. Renesas grasped the trend towards higher reliability and increased integration densities early on, and deployed the MONOS structure flash memory, which is comparatively easy to adapt to finer feature size processes, in 150 nm process MCUs in 2004, in 90 nm MCUs in 2007, and in 40 nm MCUs in 2012. In addition, Renesas was the first semiconductor manufacturer to ship flash MCU samples from 90nm generation onward while scaling the process technology.

Key features of the 28 nm on-chip flash memory IP:

(1) Verified high-speed readout

In the prototype chip, Renesas achieved a readout speed of 160 MHz (as compared to 120 MHz in Renesas 40 nm process devices) from program storage flash memory. This will make it possible for MCU products based on the 28 nm technology to implement complex real-time processing, such as engine control.

(2) Verified high reliability

The new IP maintains the 20-year data retention time, which is crucial for automotive MCUs, and achieves a rewrite cycle count of 250,000 times when used as data storage flash memory, which is also the same as that of Renesas 40 nm process devices.

(3)Possible to include large capacity Flash

When 28 nm process flash MCUs are fabricated using this flash memory, it will be possible to include a maximum capacity of over 16 MB on a single chip.

Moving to a finer process also enables about twice as many high-speed/low-power transistors to be included in the logic blocks compared with the earlier Renesas 40 nm process. This makes it possible to develop MCUs that include support for multiple CPU cores, functional safety and security, and multiple interface standards, and enables the integration of the automotive electronic control unit (ECU).

Now, Renesas has completed the development of the industry’s first 28 nm process on-chip flash memory IP for MCUs based on the expertise accumulated over many years and its experience in reducing feature sizes to the 40 nm process. This development will make it possible for Renesas to be the first to create 28 nm flash MCUs for automotive applications, Renesas will be able to deliver increased memory capacities and improved processing performance in conjunction with the finer feature sizes in the logic circuits other than flash memory circuits.

Based on the successful results of this development effort, Renesas will accelerate its development of 28 nm process automotive flash MCUs and will be the first to introduce such products to the market to respond to customer needs. Thus Renesas will be contributing to our system designers’ development leading-edge product development to implement a secure, safe, and pleasant automotive society.

(Note 1) MONOS (Metal Oxide Nitride Oxide Silicon)

Renesas is applying the MONOS technology, which has a 20-year track record in EEPROMs, secure MCUs, and other products, to flash memory integrated on the MCU chip. Renesas is also developing its own unique transistor structures.

(Remarks)

All names of products or services mentioned in this press release are trademarks or registered trademarks of their respective owners

About Renesas Electronics Corporation

Renesas Electronics Corporation (TSE: 6723), the world’s number one supplier of microcontrollers, is a premier supplier of advanced semiconductor solutions including microcontrollers, SoC solutions and a broad-range of analog and power devices. Business operations began as Renesas Electronics in April 2010 through the integration of NEC Electronics Corporation (TSE:6723) and Renesas Technology Corp., with operations spanning research, development, design and manufacturing for a wide range of applications. Headquartered in Japan, Renesas Electronics has subsidiaries in 20 countries worldwide. More information can be found at www.renesas.com.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbraith, a principal engineer at HPE, discussed how to build a fully functional Kubernetes cluster on a number of virtual machines or bare-metal hosts. Also included will be a brief demonstration of running a Galera M...
IoT offers a value of almost $4 trillion to the manufacturing industry through platforms that can improve margins, optimize operations & drive high performance work teams. By using IoT technologies as a foundation, manufacturing customers are integrating worker safety with manufacturing systems, driving deep collaboration and utilizing analytics to exponentially increased per-unit margins. However, as Benoit Lheureux, the VP for Research at Gartner points out, “IoT project implementers often ...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Tintri VM-aware storage is the simplest for virtualized applications and cloud. Organizations including GE, Toyota, United Healthcare, NASA and 6 of the Fortune 15 have said “No to LUNs.” With Tintri they mana...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, will compare the Jevons Paradox to modern-day enterprise IT, e...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Complete Internet of Things (IoT) embedded device security is not just about the device but involves the entire product’s identity, data and control integrity, and services traversing the cloud. A device can no longer be looked at as an island; it is a part of a system. In fact, given the cross-domain interactions enabled by IoT it could be a part of many systems. Also, depending on where the device is deployed, for example, in the office building versus a factory floor or oil field, security ha...
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
Fifty billion connected devices and still no winning protocols standards. HTTP, WebSockets, MQTT, and CoAP seem to be leading in the IoT protocol race at the moment but many more protocols are getting introduced on a regular basis. Each protocol has its pros and cons depending on the nature of the communications. Does there really need to be only one protocol to rule them all? Of course not. In his session at @ThingsExpo, Chris Matthieu, co-founder and CTO of Octoblu, walk you through how Oct...
SYS-CON Events announced today that Bsquare has been named “Silver Sponsor” of SYS-CON's @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. For more than two decades, Bsquare has helped its customers extract business value from a broad array of physical assets by making them intelligent, connecting them, and using the data they generate to optimize business processes.
Whether they’re located in a public, private, or hybrid cloud environment, cloud technologies are constantly evolving. While the innovation is exciting, the end mission of delivering business value and rapidly producing incremental product features is paramount. In his session at @DevOpsSummit at 19th Cloud Expo, Kiran Chitturi, CTO Architect at Sungard AS, will discuss DevOps culture, its evolution of frameworks and technologies, and how it is achieving maturity. He will also cover various st...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Bradley Holt, Developer Advocate a...
SYS-CON Events announced today that Niagara Networks will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Niagara Networks offers the highest port-density systems, and the most complete Next-Generation Network Visibility systems including Network Packet Brokers, Bypass Switches, and Network TAPs.
SYS-CON Events announced today that Secure Channels will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The bedrock of Secure Channels Technology is a uniquely modified and enhanced process based on superencipherment. Superencipherment is the process of encrypting an already encrypted message one or more times, either using the same or a different algorithm.
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...