Welcome!

Article

Performance Comparison Testing of Hive, esProc, and Impala Part 1

Three data computing languages

Performance comparison within Hive, Impala and esProc in grouping

summarizing, and join computing.

Hardware environment

PC count: 4
CPU: Intel Core i5 2500 (4 cores)
RAM: 16G
HDD: 2T/7200 rpm
Ethernet adapter: 1000 M

Software environment

OS: CentOS6. 4
JDK: 1. 6
Hadoop/hdfs 2. 2. 0

Test Result

Hive  0. 11. 0
esProc 3. 1
Impala 1. 2. 0

Data sampling

1. Restart PC before every test
2. Print the start time in the log before executing task
3. Print the end time in the log after executing task
4. Subtract the starting time from the ending time as the reference result
5. Repeat the step 1-4 for three times, and get the average value of the reference result as the final result of the test of this round

Test scenario

In order to ensure the test data is typical and comparable, the three products must go through the same computing. The Hive or Impala is designed for the data warehouse, providing the SQL-like syntax as the only available syntax. By comparison, esProc is designed as the complex procedural computing script, but not the data warehouse. In other words, esProc does not provide the SQL -style syntax directly, and esProc script can achieve the result of SQL computing by simulating in a more convenient style. So, the test computation this time is the SQL-style grouping, summarizing, and join operations.

In this test report, we use the HDFS and Hive incorporated in CDH5.0beta, while not the Hadoop that issued separately. This is because the Hadoop deployment and setup is rather complex, and the testing environment can frequently go wrong. But it is comparatively easy for CDH. esProc is easy to setup with an installation package of dozens MBs.

esProc supports both HDFS and the much faster operations on local disks, while Hive or Impala only supports HDFS. In order to test the extreme performances of these three solutions, esProc use the local disk for test, and split the data into several files and distribute them on several machines in advance, while Hive or Impala uses HDFS.

Grouping and Summarizing Test for Narrow Table

Data sample:
Table name: p_narrow
Col. count: 11
Row count: 500 million rows
Space occupied if saving as text: 120. 6G.
Data structure: personid int,name string,sex int,cityid int,birthday int,degree int,col1 string,col2 int,col3 int,col4 int,col5 string
Test case:
1.1 col. to group & 1 col. to summarize
Hive: select personid%10000, sum(col3) from p_narrow group by personid%10000
esProc: The codes fall into 3 parts. They are respectively: Program of summary machine, main program for node machine, and subprogram for node machine.

 

 


Impala: select personid%10000, sum(col3) from p_narrow group by personid%10000

2. 1 col. to group & 4 col. to summarize

Hive: select personid%10, count(col1), max(col2), sum(col3), count(col5) from p_narrow group by personid%10
esProc: The program for summary machine in cell A4 is changed to:
=A3. groups(personid: personid;count(cul1count): cul1count,max(cul2count): cul2count,sum(cul3sum): cul3sum,count(cul5): cul5count)
The main program for node machine in cell A5 is:
=A4. [email protected](personid: [email protected](personid: cu1count,max(col2count): cul2count,sum(col3sum): cul3sum,count(col5): cul5count)
The main program for node machine in cell A1 is:
=cursor. groups(personid%10000: personid; count(col1count): co1count, max(col2count): col2count, sum(col3sum): col3sum,count(col5): col5count)
Impala: select personid%10, count(col1), max(col2), sum(col3), count(col5) from p_narrow group by personid%10

3. 4 col. to group & 1 col. to summarize

Hive: select personid%10, cityid%10, birthdayid%10, col4%10 from p_narrow group by personid%10,cityid%10,birthdayid%10,col4%10
esProc: The program for summary machine in cell A4 is changed to:
=A3. groups(personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; sum(cul3sum): cul3sum)
The main program for node machine in cell A5 is changed to:
=A4. [email protected](personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; sum(col3sum): cul3sum)
The main program for node machine in cell A1 is changed to:
=cursor. groups(personid%10: personid, cityid%10: cityid, birthdayid%10: birthdayid, col4%10: col4; sum(col3sum): col3sum)
Impala: select personid%10, cityid%10, birthdayid%10, col4%10 from p_narrow group by personid%10,cityid%10,birthdayid%10,col4%10

4.4 col. to group & 4 col. to summarize

Hive: select personid%10, cityid%10, birthdayid%10, col4%10, count(col1), max(col2), sum(col3), count(col5) from p_narrow group by personid%10,cityid%10,birthdayid%10,col4%10
esProc: The program for summary machine in cell A4 is changed to:
=A3. groups(personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; count(cul1count): cul1count,max(cul2count): cul2count,sum(cul3sum): cul3sum,count(cul5): cul5count)
The main program for node machine in cell A5 is changed to:
=A4. [email protected](personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; count(col1count): cu1count,max(col2count): cul2count,sum(col3sum): cul3sum,count(col5): cul5count)
The main program for node machine in cell A1 is changed to:
=cursor. groups(personid%10: personid, cityid%10: cityid, birthdayid%10: birthdayid, col4%10: col4; count(col1count): co1count, max(col2count): col2count, sum(col3sum): col3sum, count(col5): col5count)
Impala: select personid%10, cityid%10, birthdayid%10, col4%10, count(col1), max(col2), sum(col3), count(col5) from p_narrow group by personid%10,cityid%10,birthdayid%10,col4%10
Test results:

Test results:


Grouping and summarizing test for wide table

Data sample:
Table name: p
Col. count: 106
Row count: 60 million
Space occupied if saving as text: 127. 9G.
Data structure: personid int,name string,sex int,cityid int,birthday int,degree int,col1 int,col2 int,col3 int,col4 int,col5 int,col6 int,col7 int,col8 int,col9 int,col10 int,col11 int,col12 int,col13 int,col14 int,col15 int,col16 int,col17 int,col18 int,col19 int,col20 int,col21 int,col22 int,col23 int,col24 int,col25 int,col26 int,col27 int,col28 int,col29 int,col30 int,col31 int,col32 int,col33 int,col34 int,col35 int,col36 int,col37 int,col38 int,col39 int,col40 int,col41 int,col42 int,col43 int,col44 int,col45 int,col46 int,col47 int,col48 int,col49 int,col50 int,col51 int,col52 int,col53 int,col54 int,col55 int,col56 int,col57 int,col58 int,col59 int,col60 int,col61 int,col62 int,col63 int,col64 int,col65 int,col66 int,col67 int,col68 int,col69 int,col70 int,col71 int,col72 int,col73 int,col74 int,col75 int,col76 int,col77 int,col78 int,col79 int,col80 int,col81 int,col82 int,col83 int,col84 string,col85 string,col86 string,col87 string,col88 string,col89 string,col90 string,col91 string,col92 string,col93 string,col94 string,col95 string,col96 string,col97 string,col98 string,col99 string,col100 string

Test case:
1.1 col. to group & 1 col. to summarize
Hive: select personid%10000, sum(col3) from p group by personid%10000
esProc: The codes can be divided into 3 parts. They are respectively: Program for summary machine, main program for node machine, and subprogram for node machine.

 

 


Impala: select personid%10000, sum(col3) from p group by personid%10000

2.1 col. to group & 4 col. to summarize

Hive: select personid%10, count(col1), max(col2), sum(col3), count(col5) from p group by personid%10
esProc: The program for summary machine in cell A4 is changed to:
=A3. groups(personid: personid;count(cul1count): cul1count,max(cul2count): cul2count,sum(cul3sum): cul3sum,count(cul5): cul5count)
The main program for node machine in cell A5 is changed to:
=A4. [email protected](personid: personid;count(col1count): cu1count,max(col2count): cul2count,sum(col3sum): cul3sum,count(col5): cul5count)
The main program for node machine in cell A1 is changed to:
=cursor. groups(personid%10000: personid; count(col1count): co1count, max(col2count): col2count, sum(col3sum): col3sum,count(col5): col5count)
Impala: select personid%10, count(col1), max(col2), sum(col3), count(col5) from p group by personid%10

3.4 col. to group & 1 col. to summarize

Hive: select personid%10, cityid%10, birthdayid%10, col4%10 from p group by personid%10,cityid%10,birthdayid%10,col4%10
esProc: The program for summary machine in cell A4 is changed to:
=A3. groups(personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; sum(cul3sum): cul3sum)
The main program for node machine in cell A5 is changed to:
=A4. [email protected](personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; sum(col3sum): cul3sum)
The main program for node machine in cell A1 is changed to:
=cursor. groups(personid%10: personid, cityid%10: cityid, birthdayid%10: birthdayid, col4%10: col4; sum(col3sum): col3sum)
Impala: select personid%10, cityid%10, birthdayid%10, col4%10 from p group by personid%10,cityid%10,birthdayid%10,col4%10

4.4 col. to group & 4 col. to summarize

Hive: select personid%10, cityid%10, birthdayid%10, col4%10, count(col1), max(col2), sum(col3), count(col5) from p group by personid%10,cityid%10,birthdayid%10,col4%10
esProc: The program for summary machine in cell A4 is changed to:
=A3. groups(personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; count(cul1count): cul1count,max(cul2count): cul2count,sum(cul3sum): cul3sum,count(cul5): cul5count)
The main program for node machine in cell A5 is changed to:
=A4. [email protected](personid: personid, cityid: cityid, birthdayid: birthdayid, col4: col4; count(col1count): cu1count,max(col2count): cul2count,sum(col3sum): cul3sum,count(col5): cul5count)
The main program for node machine in cell A1 is changed to:
=cursor. groups(personid%10: personid, cityid%10: cityid, birthdayid%10: birthdayid, col4%10: col4; count(col1count): co1count, max(col2count): col2count, sum(col3sum): col3sum, count(col5): col5count)
Impala: select personid%10, cityid%10, birthdayid%10, col4%10, count(col1), max(col2), sum(col3), count(col5) from p group by personid%10,cityid%10,birthdayid%10,col4%10
Test results:


The performance testing and result comparison regarding the join computing will be discussed in the next article: Performance Comparison Testing of Hive, esProc, and Impala Part 2.

Personal blog: http://www.datakeyword.blogspot.com/
Web: http://www.raqsoft.com/product-esproc

More Stories By Jessica Qiu

Jessica Qiu is the editor of Raqsoft. She provides press releases for data computation and data analytics.

Latest Stories
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes ho...
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
Adobe is changing the world though digital experiences. Adobe helps customers develop and deliver high-impact experiences that differentiate brands, build loyalty, and drive revenue across every screen, including smartphones, computers, tablets and TVs. Adobe content solutions are used daily by millions of companies worldwide-from publishers and broadcasters, to enterprises, marketing agencies and household-name brands. Building on its established design leadership, Adobe enables customers not o...
Why do your mobile transformations need to happen today? Mobile is the strategy that enterprise transformation centers on to drive customer engagement. In his general session at @ThingsExpo, Roger Woods, Director, Mobile Product & Strategy – Adobe Marketing Cloud, covered key IoT and mobile trends that are forcing mobile transformation, key components of a solid mobile strategy and explored how brands are effectively driving mobile change throughout the enterprise.
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbraith, a principal engineer at HPE, discussed how to build a fully functional Kubernetes cluster on a number of virtual machines or bare-metal hosts. Also included will be a brief demonstration of running a Galera M...
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lea...
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of So...
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
What happens when the different parts of a vehicle become smarter than the vehicle itself? As we move toward the era of smart everything, hundreds of entities in a vehicle that communicate with each other, the vehicle and external systems create a need for identity orchestration so that all entities work as a conglomerate. Much like an orchestra without a conductor, without the ability to secure, control, and connect the link between a vehicle’s head unit, devices, and systems and to manage the ...
24Notion is full-service global creative digital marketing, technology and lifestyle agency that combines strategic ideas with customized tactical execution. With a broad understand of the art of traditional marketing, new media, communications and social influence, 24Notion uniquely understands how to connect your brand strategy with the right consumer. 24Notion ranked #12 on Corporate Social Responsibility - Book of List.
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, will compare the Jevons Paradox to modern-day enterprise IT, e...