Welcome!

News Feed Item

A*STAR Scientists Create Stem Cells From a Drop of Blood



The DIY finger-prick technique opens door for extensive stem cell banking

Singapore, 3/20 - Above: Schematic on finger-prick blood isolation and treatment for cellular reprogramming (Image from Loh Yuin Han, Jonathan, IMCB); Down: Marker staining of hiPSCs (Image from Loh Yuin Han, Jonathan, IMCB)
Singapore, Mar 20, 2014 - (ACN Newswire) - Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood. The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing. The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.

By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs. As hiPSCs exhibit properties remarkably similar to human embryonic stem cells, they are invaluable resources for basic research, drug discovery and cell therapy. In countries like Japan, USA and UK[1], a number of hiPSC bank initiatives have sprung up to make hiPSCs available for stem cell research and medical studies.

Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors. Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. In the paper published online on the Stem Cell Translational Medicine journal, scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs. The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency. A patent has been filed for the innovation.

The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.

By integrating it with the hiPSC bank initiatives, the finger-prick technique paves the way for establishing diverse and fully characterised hiPSC banking for stem cell research. The potential access to a wide range of hiPSCs could also replace the use of embryonic stem cells, which are less accessible. It could also facilitate the set-up of a small hiPSC bank in Singapore to study targeted local diseases.

Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB and lead scientist for the finger-prick hiPSC technique, said, "It all began when we wondered if we could reduce the volume of blood used for reprogramming. We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilised less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper, said "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells. This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."

Prof Hong Wanjin, Executive Director at IMCB, said "Research on hiPSCs is now highly sought-after, given its potential to be used as a model for studying human diseases and for regenerative medicine. Translational research and technology innovations are constantly encouraged at IMCB and this new technique is very timely. We hope to eventually help the scientific community gain greater accessibility to hiPSCs for stem cell research through this innovation."

[1] New York Stem Cell Foundation, California Institute for Regenerative Medicine, Wellcome Trust Sanger Institute and Kyoto University Center for iPS Cell Research & Application are some institutes which are establishing hiPSC banks.

The research findings described in this media release can be found in the Stem Cell Translational Medicine Journal, under the title, "Human Finger-prick iPSCs Facilitate the Development of Stem Cell Banking" by Hong-Kee Tan,1, Cheng-Xu Delon Toh,1,16, Dongrui Ma,2,16, Binxia Yang,1, Tong Ming Liu,3, Jun Lu,2, Chee-Wai Wong,1, Tze-Kai Tan,1, Hu Li,4, Christopher Syn,5,15, Eng-Lee Tan,6,7, Bing Lim,3,8, Yoon-Pin Lim,9,10,11, Stuart A. Cook,2,12,13,14, Yuin-Han Loh,1,15.

1. Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
2. Research and Development Unit (RDU), National Heart Centre Singapore, Singapore
3. Stem Cell and Developmental Biology, Genome Institute of Singapore, A*STAR, Singapore
4. Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, USA
5. Health Sciences Authority, Singapore
6. Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore
7. Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore
8. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
9. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
10. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
11. Bioinformatics Institute, A*STAR, Singapore
12. Duke-NUS Graduate Medical School, Singapore
13. Royal Brompton Hospital, London, UK
14. National Heart & Lung Institute, Imperial College, London, UK
15. Department of Biological Sciences, National University of Singapore, Singapore

All the authors contributed equally to the work.

Correspondence should be addressed to Yuin-Han Loh, Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore. E-mail: [email protected]

Full text of the Stem Cell Translational Medicine paper can be accessed online from: http://bit.ly/1hEI98J.

About Institute of Molecular and Cell Biology (IMCB)

The Institute of Molecular and Cell Biology (IMCB) was established in 1987 at the National University of Singapore (NUS) before becoming an autonomous research institute (RI) of A*STAR and moving to Biopolis in 2004. IMCB strives to maintain the scientific excellence of PI-driven research and at the same time aims to promote collaborative team-based projects of medical and industrial relevance.

Funded primarily by the Biomedical Research Council (BMRC) of A*STAR, IMCB's research activities focus on four major fields: Animal Models of Development and Disease, Cancer Genetics and Therapeutics, Cell Biology in Health and Disease, and Structural Biology and Drug Discovery. For more information about IMCB, please visit www.imcb.a-star.edu.sg.

About A*STAR

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories. For more information on A*STAR, please visit www.a-star.edu.sg.

Source: A*STAR

Contact:
Tan Yun Yun (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6273
Email: [email protected]




Copyright 2014 ACN Newswire. All rights reserved.

More Stories By ACN Newswire

Copyright 2008 ACN Newswire. All rights reserved. Republication or redistribution of ACN Newswire content is expressly prohibited without the prior written consent of ACN Newswire. ACN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
"We are an all-flash array storage provider but our focus has been on VM-aware storage specifically for virtualized applications," stated Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Choosing the right cloud for your workloads is a balancing act that can cost your organization time, money and aggravation - unless you get it right the first time. Economics, speed, performance, accessibility, administrative needs and security all play a vital role in dictating your approach to the cloud. Without knowing the right questions to ask, you could wind up paying for capacity you'll never need or underestimating the resources required to run your applications.
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
WebRTC is about the data channel as much as about video and audio conferencing. However, basically all commercial WebRTC applications have been built with a focus on audio and video. The handling of “data” has been limited to text chat and file download – all other data sharing seems to end with screensharing. What is holding back a more intensive use of peer-to-peer data? In her session at @ThingsExpo, Dr Silvia Pfeiffer, WebRTC Applications Team Lead at National ICT Australia, looked at differ...
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
Security, data privacy, reliability and regulatory compliance are critical factors when evaluating whether to move business applications from in-house client hosted environments to a cloud platform. In her session at 18th Cloud Expo, Vandana Viswanathan, Associate Director at Cognizant, In this session, will provide an orientation to the five stages required to implement a cloud hosted solution validation strategy.
The security needs of IoT environments require a strong, proven approach to maintain security, trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vic...
With the proliferation of both SQL and NoSQL databases, organizations can now target specific fit-for-purpose database tools for their different application needs regarding scalability, ease of use, ACID support, etc. Platform as a Service offerings make this even easier now, enabling developers to roll out their own database infrastructure in minutes with minimal management overhead. However, this same amount of flexibility also comes with the challenges of picking the right tool, on the right ...
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now ...
"Splunk basically takes machine data and we make it usable, valuable and accessible for everyone. The way that plays in DevOps is - we need to make data-driven decisions to delivering applications," explained Andi Mann, Chief Technology Advocate at Splunk and @DevOpsSummit Conference Chair, in this SYS-CON.tv interview at @DevOpsSummit at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Security, data privacy, reliability, and regulatory compliance are critical factors when evaluating whether to move business applications from in-house, client-hosted environments to a cloud platform. Quality assurance plays a vital role in ensuring that the appropriate level of risk assessment, verification, and validation takes place to ensure business continuity during the migration to a new cloud platform.
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
In his session at @DevOpsSummit at 19th Cloud Expo, Robert Doyle, lead architect at eCube Systems, will examine the issues and need for an agile infrastructure and show the advantages of capturing developer knowledge in an exportable file for migration into production. He will introduce the use of NXTmonitor, a next-generation DevOps tool that captures application environments, dependencies and start/stop procedures in a portable configuration file with an easy-to-use GUI. In addition to captur...
Who are you? How do you introduce yourself? Do you use a name, or do you greet a friend by the last four digits of his social security number? Assuming you don’t, why are we content to associate our identity with 10 random digits assigned by our phone company? Identity is an issue that affects everyone, but as individuals we don’t spend a lot of time thinking about it. In his session at @ThingsExpo, Ben Klang, Founder & President of Mojo Lingo, discussed the impact of technology on identity. Sho...
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.