Welcome!

News Feed Item

A*STAR Scientists Create Stem Cells From a Drop of Blood



The DIY finger-prick technique opens door for extensive stem cell banking

Singapore, 3/20 - Above: Schematic on finger-prick blood isolation and treatment for cellular reprogramming (Image from Loh Yuin Han, Jonathan, IMCB); Down: Marker staining of hiPSCs (Image from Loh Yuin Han, Jonathan, IMCB)
Singapore, Mar 20, 2014 - (ACN Newswire) - Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood. The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing. The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.

By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs. As hiPSCs exhibit properties remarkably similar to human embryonic stem cells, they are invaluable resources for basic research, drug discovery and cell therapy. In countries like Japan, USA and UK[1], a number of hiPSC bank initiatives have sprung up to make hiPSCs available for stem cell research and medical studies.

Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors. Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. In the paper published online on the Stem Cell Translational Medicine journal, scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs. The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency. A patent has been filed for the innovation.

The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.

By integrating it with the hiPSC bank initiatives, the finger-prick technique paves the way for establishing diverse and fully characterised hiPSC banking for stem cell research. The potential access to a wide range of hiPSCs could also replace the use of embryonic stem cells, which are less accessible. It could also facilitate the set-up of a small hiPSC bank in Singapore to study targeted local diseases.

Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB and lead scientist for the finger-prick hiPSC technique, said, "It all began when we wondered if we could reduce the volume of blood used for reprogramming. We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilised less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper, said "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells. This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."

Prof Hong Wanjin, Executive Director at IMCB, said "Research on hiPSCs is now highly sought-after, given its potential to be used as a model for studying human diseases and for regenerative medicine. Translational research and technology innovations are constantly encouraged at IMCB and this new technique is very timely. We hope to eventually help the scientific community gain greater accessibility to hiPSCs for stem cell research through this innovation."

[1] New York Stem Cell Foundation, California Institute for Regenerative Medicine, Wellcome Trust Sanger Institute and Kyoto University Center for iPS Cell Research & Application are some institutes which are establishing hiPSC banks.

The research findings described in this media release can be found in the Stem Cell Translational Medicine Journal, under the title, "Human Finger-prick iPSCs Facilitate the Development of Stem Cell Banking" by Hong-Kee Tan,1, Cheng-Xu Delon Toh,1,16, Dongrui Ma,2,16, Binxia Yang,1, Tong Ming Liu,3, Jun Lu,2, Chee-Wai Wong,1, Tze-Kai Tan,1, Hu Li,4, Christopher Syn,5,15, Eng-Lee Tan,6,7, Bing Lim,3,8, Yoon-Pin Lim,9,10,11, Stuart A. Cook,2,12,13,14, Yuin-Han Loh,1,15.

1. Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
2. Research and Development Unit (RDU), National Heart Centre Singapore, Singapore
3. Stem Cell and Developmental Biology, Genome Institute of Singapore, A*STAR, Singapore
4. Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, USA
5. Health Sciences Authority, Singapore
6. Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore
7. Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore
8. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
9. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
10. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
11. Bioinformatics Institute, A*STAR, Singapore
12. Duke-NUS Graduate Medical School, Singapore
13. Royal Brompton Hospital, London, UK
14. National Heart & Lung Institute, Imperial College, London, UK
15. Department of Biological Sciences, National University of Singapore, Singapore

All the authors contributed equally to the work.

Correspondence should be addressed to Yuin-Han Loh, Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore. E-mail: [email protected]

Full text of the Stem Cell Translational Medicine paper can be accessed online from: http://bit.ly/1hEI98J.

About Institute of Molecular and Cell Biology (IMCB)

The Institute of Molecular and Cell Biology (IMCB) was established in 1987 at the National University of Singapore (NUS) before becoming an autonomous research institute (RI) of A*STAR and moving to Biopolis in 2004. IMCB strives to maintain the scientific excellence of PI-driven research and at the same time aims to promote collaborative team-based projects of medical and industrial relevance.

Funded primarily by the Biomedical Research Council (BMRC) of A*STAR, IMCB's research activities focus on four major fields: Animal Models of Development and Disease, Cancer Genetics and Therapeutics, Cell Biology in Health and Disease, and Structural Biology and Drug Discovery. For more information about IMCB, please visit www.imcb.a-star.edu.sg.

About A*STAR

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories. For more information on A*STAR, please visit www.a-star.edu.sg.

Source: A*STAR

Contact:
Tan Yun Yun (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6273
Email: [email protected]




Copyright 2014 ACN Newswire. All rights reserved.

More Stories By ACN Newswire

Copyright 2008 ACN Newswire. All rights reserved. Republication or redistribution of ACN Newswire content is expressly prohibited without the prior written consent of ACN Newswire. ACN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
"Software-defined storage is a big problem in this industry because so many people have different definitions as they see fit to use it," stated Peter McCallum, VP of Datacenter Solutions at FalconStor Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"Operations is sort of the maturation of cloud utilization and the move to the cloud," explained Steve Anderson, Product Manager for BMC’s Cloud Lifecycle Management, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
The cloud competition for database hosts is fierce. How do you evaluate a cloud provider for your database platform? In his session at 18th Cloud Expo, Chris Presley, a Solutions Architect at Pythian, gave users a checklist of considerations when choosing a provider. Chris Presley is a Solutions Architect at Pythian. He loves order – making him a premier Microsoft SQL Server expert. Not only has he programmed and administered SQL Server, but he has also shared his expertise and passion with b...
Unless your company can spend a lot of money on new technology, re-engineering your environment and hiring a comprehensive cybersecurity team, you will most likely move to the cloud or seek external service partnerships. In his session at 18th Cloud Expo, Darren Guccione, CEO of Keeper Security, revealed what you need to know when it comes to encryption in the cloud.
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
What are the successful IoT innovations from emerging markets? What are the unique challenges and opportunities from these markets? How did the constraints in connectivity among others lead to groundbreaking insights? In her session at @ThingsExpo, Carmen Feliciano, a Principal at AMDG, will answer all these questions and share how you can apply IoT best practices and frameworks from the emerging markets to your own business.
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Cloud analytics is dramatically altering business intelligence. Some businesses will capitalize on these promising new technologies and gain key insights that’ll help them gain competitive advantage. And others won’t. Whether you’re a business leader, an IT manager, or an analyst, we want to help you and the people you need to influence with a free copy of “Cloud Analytics for Dummies,” the essential guide to this explosive new space for business intelligence.
Traditional IT, great for stable systems of record, is struggling to cope with newer, agile systems of engagement requirements coming straight from the business. In his session at 18th Cloud Expo, William Morrish, General Manager of Product Sales at Interoute, outlined ways of exploiting new architectures to enable both systems and building them to support your existing platforms, with an eye for the future. Technologies such as Docker and the hyper-convergence of computing, networking and sto...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, discussed the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filterin...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...