Click here to close now.




















Welcome!

News Feed Item

A*STAR Scientists Create Stem Cells From a Drop of Blood



The DIY finger-prick technique opens door for extensive stem cell banking

Singapore, 3/20 - Above: Schematic on finger-prick blood isolation and treatment for cellular reprogramming (Image from Loh Yuin Han, Jonathan, IMCB); Down: Marker staining of hiPSCs (Image from Loh Yuin Han, Jonathan, IMCB)
Singapore, Mar 20, 2014 - (ACN Newswire) - Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood. The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing. The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.

By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs. As hiPSCs exhibit properties remarkably similar to human embryonic stem cells, they are invaluable resources for basic research, drug discovery and cell therapy. In countries like Japan, USA and UK[1], a number of hiPSC bank initiatives have sprung up to make hiPSCs available for stem cell research and medical studies.

Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors. Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. In the paper published online on the Stem Cell Translational Medicine journal, scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs. The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency. A patent has been filed for the innovation.

The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.

By integrating it with the hiPSC bank initiatives, the finger-prick technique paves the way for establishing diverse and fully characterised hiPSC banking for stem cell research. The potential access to a wide range of hiPSCs could also replace the use of embryonic stem cells, which are less accessible. It could also facilitate the set-up of a small hiPSC bank in Singapore to study targeted local diseases.

Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB and lead scientist for the finger-prick hiPSC technique, said, "It all began when we wondered if we could reduce the volume of blood used for reprogramming. We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilised less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper, said "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells. This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."

Prof Hong Wanjin, Executive Director at IMCB, said "Research on hiPSCs is now highly sought-after, given its potential to be used as a model for studying human diseases and for regenerative medicine. Translational research and technology innovations are constantly encouraged at IMCB and this new technique is very timely. We hope to eventually help the scientific community gain greater accessibility to hiPSCs for stem cell research through this innovation."

[1] New York Stem Cell Foundation, California Institute for Regenerative Medicine, Wellcome Trust Sanger Institute and Kyoto University Center for iPS Cell Research & Application are some institutes which are establishing hiPSC banks.

The research findings described in this media release can be found in the Stem Cell Translational Medicine Journal, under the title, "Human Finger-prick iPSCs Facilitate the Development of Stem Cell Banking" by Hong-Kee Tan,1, Cheng-Xu Delon Toh,1,16, Dongrui Ma,2,16, Binxia Yang,1, Tong Ming Liu,3, Jun Lu,2, Chee-Wai Wong,1, Tze-Kai Tan,1, Hu Li,4, Christopher Syn,5,15, Eng-Lee Tan,6,7, Bing Lim,3,8, Yoon-Pin Lim,9,10,11, Stuart A. Cook,2,12,13,14, Yuin-Han Loh,1,15.

1. Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
2. Research and Development Unit (RDU), National Heart Centre Singapore, Singapore
3. Stem Cell and Developmental Biology, Genome Institute of Singapore, A*STAR, Singapore
4. Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, USA
5. Health Sciences Authority, Singapore
6. Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore
7. Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore
8. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
9. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
10. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
11. Bioinformatics Institute, A*STAR, Singapore
12. Duke-NUS Graduate Medical School, Singapore
13. Royal Brompton Hospital, London, UK
14. National Heart & Lung Institute, Imperial College, London, UK
15. Department of Biological Sciences, National University of Singapore, Singapore

All the authors contributed equally to the work.

Correspondence should be addressed to Yuin-Han Loh, Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore. E-mail: [email protected]

Full text of the Stem Cell Translational Medicine paper can be accessed online from: http://bit.ly/1hEI98J.

About Institute of Molecular and Cell Biology (IMCB)

The Institute of Molecular and Cell Biology (IMCB) was established in 1987 at the National University of Singapore (NUS) before becoming an autonomous research institute (RI) of A*STAR and moving to Biopolis in 2004. IMCB strives to maintain the scientific excellence of PI-driven research and at the same time aims to promote collaborative team-based projects of medical and industrial relevance.

Funded primarily by the Biomedical Research Council (BMRC) of A*STAR, IMCB's research activities focus on four major fields: Animal Models of Development and Disease, Cancer Genetics and Therapeutics, Cell Biology in Health and Disease, and Structural Biology and Drug Discovery. For more information about IMCB, please visit www.imcb.a-star.edu.sg.

About A*STAR

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories. For more information on A*STAR, please visit www.a-star.edu.sg.

Source: A*STAR

Contact:
Tan Yun Yun (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6273
Email: [email protected]




Copyright 2014 ACN Newswire. All rights reserved.

More Stories By ACN Newswire

Copyright 2008 ACN Newswire. All rights reserved. Republication or redistribution of ACN Newswire content is expressly prohibited without the prior written consent of ACN Newswire. ACN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Any Ops team trying to support a company in today’s cloud-connected world knows that a new way of thinking is required – one just as dramatic than the shift from Ops to DevOps. The diversity of modern operations requires teams to focus their impact on breadth vs. depth. In his session at DevOps Summit, Adam Serediuk, Director of Operations at xMatters, Inc., will discuss the strategic requirements of evolving from Ops to DevOps, and why modern Operations has begun leveraging the “NoOps” approa...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Organizations from small to large are increasingly adopting cloud solutions to deliver essential business services at a much lower cost. According to cyber security experts, the frequency and severity of cyber-attacks are on the rise, causing alarm to businesses and customers across a variety of industries. To defend against exploits like these, a company must adopt a comprehensive security defense strategy that is designed for their business. In 2015, organizations such as United Airlines, Sony...
The Internet of Things is in the early stages of mainstream deployment but it promises to unlock value and rapidly transform how organizations manage, operationalize, and monetize their assets. IoT is a complex structure of hardware, sensors, applications, analytics and devices that need to be able to communicate geographically and across all functions. Once the data is collected from numerous endpoints, the challenge then becomes converting it into actionable insight.
Puppet Labs has announced the next major update to its flagship product: Puppet Enterprise 2015.2. This release includes new features providing DevOps teams with clarity, simplicity and additional management capabilities, including an all-new user interface, an interactive graph for visualizing infrastructure code, a new unified agent and broader infrastructure support.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Trel...
Amazon and Google have built software-defined data centers (SDDCs) that deliver massively scalable services with great efficiency. Yet, building SDDCs has proven to be a near impossibility for ‘normal’ companies without hyper-scale resources. In his session at 17th Cloud Expo, David Cauthron, founder and chief executive officer of Nimboxx, will discuss the evolution of virtualization (hardware, application, memory, storage) and how commodity / open source hyper converged infrastructure (HCI) so...
In their Live Hack” presentation at 17th Cloud Expo, Stephen Coty and Paul Fletcher, Chief Security Evangelists at Alert Logic, will provide the audience with a chance to see a live demonstration of the common tools cyber attackers use to attack cloud and traditional IT systems. This “Live Hack” uses open source attack tools that are free and available for download by anybody. Attendees will learn where to find and how to operate these tools for the purpose of testing their own IT infrastructu...
The web app is agile. The REST API is agile. The testing and planning are agile. But alas, data infrastructures certainly are not. Once an application matures, changing the shape or indexing scheme of data often forces at best a top down planning exercise and at worst includes schema changes that force downtime. The time has come for a new approach that fundamentally advances the agility of distributed data infrastructures. Come learn about a new solution to the problems faced by software organ...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
IBM’s Blue Box Cloud, powered by OpenStack, is now available in any of IBM’s globally integrated cloud data centers running SoftLayer infrastructure. Less than 90 days after its acquisition of Blue Box, IBM has integrated its Blue Box Cloud Dedicated private-cloud-as-a-service into its broader portfolio of OpenStack® based solutions. The announcement, made today at the OpenStack Silicon Valley event, further highlights IBM’s continued support to deliver OpenStack solutions across all cloud depl...
Red Hat is investing in Tesora, the number one contributor to OpenStack Trove Database as a Service (DBaaS) also ranked among the top 20 companies contributing to OpenStack overall. Tesora, the company bringing OpenStack Trove Database as a Service (DBaaS) to the enterprise, has announced that Red Hat and others have invested in the company as a part of Tesora's latest funding round. The funding agreement expands on the ongoing collaboration between Tesora and Red Hat, which dates back to Febr...
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and a...
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of I...
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.