Welcome!

News Feed Item

EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022

LONDON, March 20, 2014 /PRNewswire/ -- Reportbuyer.com just published a new market research report:

EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022


EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022

Summary

Overweight and obesity are characterized by abnormal or excessive fat accumulation in the body, which can increase the likelihood of developing type 2 diabetes and cardiovascular diseases. Obesity is an escalating public health problem with an increasing worldwide prevalence and has become a well-known threat to public health. As obesity is a complex condition associated with a wide range of lifestyle, genetic, social, cultural, and environmental factors, its prevalence may vary across countries, depending on the variations in these contributing factors.

GlobalData's epidemiological analysis forecasts that prevalent cases of overweight in the 9MM (US, France, Germany, Italy, Spain, UK, Japan, Brazil, and Canada) will increase from 250.05 million in 2012 to 271.86 million cases in 2022 at an annual growth rate (AGR) of 0.86%. Approximately 57% of the 250.05 million prevalent cases of overweight adults in the 9MM in 2012 were in men. GlobalData epidemiologists forecast that there were 167.39 million prevalent cases of obesity in the 9MM in 2012, which will increase to 213.34 million cases in 2022, increasing at an AGR of 2.75%. Approximately 52% of the 167.39 million prevalent cases of obese adults in the 9MM in 2012 were in women.

According to GlobalData's forecast, the prevalent cases of both overweight and obesity will increase dramatically over the next decade, with the number of obese adults increasing by an alarming 27.50%. Overweight and obesity have reached pandemic proportions; however, GlobalData epidemiologists believe that with the alarming increase in the prevalence of both overweight and obesity, the morbidity and mortality associated with the disease will continue to increase dramatically as well.

Scope

- The Overweight and Obesity EpiCast Report provides an overview of the risk factors, comorbidities, and global trends of overweight and obesity in the 9MM (US, France, Germany, Italy, Spain, UK, Japan, Brazil, and Canada). It includes a 10-year epidemiology forecast of the prevalent cases of overweight, obesity, obesity class I, obesity class II, and obesity class III segmented by sex and age. In addition, the report includes a 10-year forecast of the prevalent cases of obesity-associated comorbidities, including diagnosed diabetes, diagnosed hypertension, and dyslipidemia, among adults with overweight/obesity in some of these markets.
- The overweight and obesity epidemiology report is written and developed by Masters- and PhD-level epidemiologists.
- The EpiCast Report is in-depth, high quality, transparent and market-driven, providing expert analysis of disease trends in the 9MM.

Reasons to buy

- Develop business strategies by understanding the trends shaping and driving the global overweight and obesity market.
- Quantify patient populations in the global overweight and obesity market to improve product design, pricing, and launch plans.
- Organize sales and marketing efforts by identifying the age groups and sex that present the best opportunities for overweight and obesity therapeutics in each of the markets covered.
- Identify the number of obesity class I, obesity class II, and obesity class III prevalent cases.
1 Table of Contents
1 Table of Contents 4
1.1 List of Tables 7
1.2 List of Figures 8
2 Introduction 10
2.1 Catalyst 10
2.2 Related Reports 11
3 Epidemiology 12

3.1 Disease Overview 12
3.2 Risk Factors and Comorbidities 13
3.2.1 Family history is a strong predictor of obesity 13
3.2.2 Physical inactivity is an independent predictor of obesity 14
3.2.3 Excessive caloric intake doubles the risk for obesity 15
3.2.4 Hypertension is as high as 42% in obese adults 16
3.2.5 Dyslipidemia and type 2 diabetes are common comorbidities in obese patients 17
3.3 Global Trends 19
3.3.1 US 20
3.3.2 5EU 22
3.3.3 Japan 28
3.3.4 Brazil 29
3.3.5 Canada 31
3.4 Forecast Methodology 32
3.4.1 Sources Used 39
3.4.2 Forecast Assumptions and Methods: Prevalent Cases of Overweight, Obesity, Obesity by Class, and Comorbidities 46
3.4.3 Sources Not Used 63
3.5 Epidemiology Forecast of Overweight (2012–2022) 63
3.5.1 Prevalent Cases of Overweight 63
3.5.2 Age-Specific Prevalent Cases of Overweight 65
3.5.3 Sex-Specific Prevalent Cases of Overweight 67
3.5.4 Age-Standardized Prevalence of Overweight 70
3.6 Epidemiology Forecast of Obesity (2012–2022) 71
3.6.1 Prevalent Cases of Obesity 71
3.6.2 Age-Specific Prevalent Cases of Obesity 73

3.6.3 Sex-Specific Prevalent Cases of Obesity 75
3.6.4 Age-Standardized Prevalence of Obesity 76
3.7 Epidemiology Forecast of Obesity Class I (2012–2022) 77
3.7.1 Prevalent Cases of Obesity Class I 77
3.7.2 Age-Specific Prevalent Cases of Obesity Class I 79
3.7.3 Sex-Specific Prevalent Cases of Obesity Class I 81
3.7.4 Age-Standardized Prevalence of Obesity Class I 83
3.8 Epidemiology Forecast of Obesity Class II (2012–2022) 85
3.8.1 Prevalent Cases of Obesity Class II 85
3.8.2 Age-Specific Prevalent Cases of Obesity Class II 87
3.8.3 Sex-Specific Prevalent Cases of Obesity Class II 89
3.8.4 Age-Standardized Prevalence of Obesity Class II 91
3.9 Epidemiology Forecast of Obesity Class III (2012–2022) 93
3.9.1 Prevalent Cases of Obesity Class III 93
3.9.2 Age-Specific Prevalent Cases of Obesity Class III 95
3.9.3 Sex-Specific Prevalent Cases of Obesity Class III 97
3.9.4 Age-Standardized Prevalence of Obesity Class III 99
3.10 Epidemiology Forecast of Comorbidities among Adults with Overweight/Obesity (2012 and 2022) 101
3.10.1 Prevalent Cases of Diagnosed Diabetes among Adults with Overweight/Obesity 101
3.10.2 Prevalent Cases of Diagnosed Hypertension in Adults with Overweight/Obesity 104
3.10.3 Prevalent Cases of Dyslipidemia among Adults with Overweight/Obesity 106
3.11 Discussion 109
3.11.1 Conclusions on Epidemiological Trends 109
3.11.2 Limitations of the Analysis 110

3.11.3 Strengths of the Analysis 111
4 Appendix 112
4.1 Bibliography 112
4.2 About the Authors 118
4.2.1 Epidemiologists 118
4.2.2 Reviewers 118
4.2.3 Global Director of Epidemiology and Health Policy 119
4.2.4 Global Head of Healthcare 120
4.3 About GlobalData 121
4.4 About EpiCast 121
4.5 Disclaimer 121

1.1 List of Tables

Table 1: The WHO Classification System of Adult Overweight and Obesity According to BMI 12
Table 2: Risk Factors and Comorbidities of Obesity 13
Table 3: 9MM, Age-Adjusted and Crude Prevalence (%) of Obesity, by Sex, Ages ?20 Years, 2008 20
Table 4: JASSO and WHO Classifications of Obesity 28
Table 5: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Overweight 33
Table 6: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Obesity 34
Table 7: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Obesity Class I, Class II, and Class III 36
Table 8: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Comorbidities in Overweight/Obese 38
Table 9: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 64
Table 10: 9MM, Prevalent Cases of Overweight, By Age, Both Sexes, N (Millions), Row (%), 2012 66
Table 11: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 68

Table 12: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 72
Table 13: 9MM, Prevalent Cases of Obesity, By Age, Both Sexes, N (Millions), Row (%), 2012 74
Table 14: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, by Sex, N (Millions), Row (%), 2012 75
Table 15: 9MM, Prevalent Cases of Obesity Class I, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 78
Table 16: 9MM, Prevalent Cases of Obesity Class I, by Age, Both Sexes, N (Millions), Row (%), 2012 80
Table 17: 9MM, Prevalent Cases of Obesity Class I, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 82
Table 18: 9MM, Prevalent Cases of Obesity Class II, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 86

Table 19: 9MM, Prevalent Cases of Obesity Class II, By Age, Both Sexes, N (Millions), Row (%), 2012 88
Table 20: 9MM, Prevalent Cases of Obesity Class II, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 90
Table 21: 9MM, Prevalent Cases of Obesity Class III, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 94
Table 22: 9MM, Prevalent Cases of Obesity Class III, By Age, Both Sexes, N (Millions), Row (%), 2012 96
Table 23: 9MM, Prevalent Cases of Obesity Class III, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 98
Table 24: 5MM*, Prevalent Cases of Diagnosed Diabetes among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 and 2022 102
Table 25: 6MM*, Prevalent Cases of Diagnosed Hypertension among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 and 2022 105
Table 26: 4MM, Prevalent Cases of Dyslipidemia* among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 and 2022 107

1.2 List of Figures

Figure 1: US, Overweight and Obesity Age-Adjusted Prevalence (%), Ages 20–74 Years, Men, 1960–2010 21
Figure 2: US, Overweight and Obesity Age-Adjusted Prevalence (%), Ages 20–74 Years, Women, 1960–2010 21
Figure 3: France, Overweight and Obesity Prevalence (%), Ages ?15 Years, Men, 1997–2006 23
Figure 4: France, Overweight and Obesity Prevalence (%), Ages ?15 Years, Women, 1997–2006 23
Figure 5: Italy, Overweight and Obesity Prevalence (%), Ages ?18, Men, 1983–2010 25
Figure 6: Italy, Overweight and Obesity Prevalence (%), Ages ?18, Men, 1983–2010 25
Figure 7: UK, Overweight and Obesity Prevalence (%), Ages ?16 Years, Men, 1993–2011 27
Figure 8: UK, Overweight and Obesity Prevalence (%), Ages ?16 Years, Women, 1993–2011 27
Figure 9: Japan, Obesity Prevalence (%), Ages ?20 Years, By Sex, 1976–2006 29
Figure 10: Brazil, Overweight and Obesity Prevalence (%), Ages ?20 Years, Men, 1975–2003 30
Figure 11: Brazil, Overweight and Obesity Prevalence (%), Ages ?20 Years, Women, 1975–2003 30
Figure 12: Canada, Obesity Prevalence (%), Ages ?18 Years, Both Sexes, 1978–2008 32
Figure 13: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 65
Figure 14: 9MM, Prevalent Cases of Overweight, by Age, Both Sexes, N (Millions), 2012 67
Figure 15: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, by Sex, N (Millions), 2012 69
Figure 16: 9MM, Overweight Age-Standardized Prevalence (%), Ages ?18 Years, By Sex, 2012 71
Figure 17: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 73

Figure 18: 9MM, Prevalent Cases of Obesity, By Age, Both Sexes, N (Millions), 2012 74
Figure 19: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, by Sex, N (Millions), 2012 76
Figure 20: 9MM, Obesity Age-Standardized Prevalence (%), Ages ?18 Years, By Sex, 2012 77
Figure 21: 9MM*, Prevalent Cases of Obesity Class I, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 79
Figure 22: 9MM*, Prevalent Cases of Obesity Class I, By Age, Both Sexes, N (Millions), 2012 81
Figure 23: 9MM*, Prevalent Cases of Obesity Class I, Ages ?18 Years, by Sex, N (Millions), 2012 83
Figure 24: 9MM*, Obesity Class I Age-Standardized Prevalence (%), Ages ?18 Years, by Sex, 2012 84
Figure 25: 9MM*, Prevalent Cases of Obesity Class II, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 87
Figure 26: 9MM*, Prevalent Cases of Obesity Class II, By Age, Both Sexes, N (Millions), 2012 89
Figure 27: 9MM*, Prevalent Cases of Obesity Class II, Ages ?18 Years, by Sex, N (Millions), 2012 91
Figure 28: 9MM*, Age-Standardized Prevalence (%) of Obesity Class II, Ages ?18 Years, By Sex, 2012 92
Figure 29: 9MM*, Prevalent Cases of Obesity Class III, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 95
Figure 30: 9MM*, Prevalent Cases of Obesity Class III, By Age, Both Sexes, N (Millions), 2012 97
Figure 31: 9MM*, Prevalent Cases of Obesity Class III, Ages ?18 Years, By Sex, N (Millions), 2012 99
Figure 32: 9MM*, Obesity Class III Age-Standardized Prevalence (%), Ages ?18 Years, By Sex, 2012 100
Figure 33: 5MM*, Prevalent Cases of Diagnosed Diabetes among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 103
Figure 34: 6MM*, Prevalent Cases of Diagnosed Hypertension among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 106
Figure 35: 4MM*, Prevalent Cases of Dyslipidemia** among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 108

Read the full report:
EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022
http://www.reportbuyer.com/pharma_healthcare/diseases/epicast_report_overweight_obesity_epidemiology_forecast_2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Pathology

For more information:
Sarah Smith
Research Advisor at Reportbuyer.com  
Email: [email protected]  
Tel: +44 208 816 85 48
Website: www.reportbuyer.com

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
SYS-CON Events announced today that Isomorphic Software will exhibit at DevOps Summit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Isomorphic Software provides the SmartClient HTML5/AJAX platform, the most advanced technology for building rich, cutting-edge enterprise web applications for desktop and mobile. SmartClient combines the productivity and performance of traditional desktop software with the simp...
"When you think about the data center today, there's constant evolution, The evolution of the data center and the needs of the consumer of technology change, and they change constantly," stated Matt Kalmenson, VP of Sales, Service and Cloud Providers at Veeam Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Let’s face it, embracing new storage technologies, capabilities and upgrading to new hardware often adds complexity and increases costs. In his session at 18th Cloud Expo, Seth Oxenhorn, Vice President of Business Development & Alliances at FalconStor, discussed how a truly heterogeneous software-defined storage approach can add value to legacy platforms and heterogeneous environments. The result reduces complexity, significantly lowers cost, and provides IT organizations with improved efficienc...
With 15% of enterprises adopting a hybrid IT strategy, you need to set a plan to integrate hybrid cloud throughout your infrastructure. In his session at 18th Cloud Expo, Steven Dreher, Director of Solutions Architecture at Green House Data, discussed how to plan for shifting resource requirements, overcome challenges, and implement hybrid IT alongside your existing data center assets. Highlights included anticipating workload, cost and resource calculations, integrating services on both sides...
In his session at @DevOpsSummit at 19th Cloud Expo, Yoseph Reuveni, Director of Software Engineering at Jet.com, will discuss Jet.com's journey into containerizing Microsoft-based technologies like C# and F# into Docker. He will talk about lessons learned and challenges faced, the Mono framework tryout and how they deployed everything into Azure cloud. Yoseph Reuveni is a technology leader with unique experience developing and running high throughput (over 1M tps) distributed systems with extre...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
Big Data engines are powering a lot of service businesses right now. Data is collected from users from wearable technologies, web behaviors, purchase behavior as well as several arbitrary data points we’d never think of. The demand for faster and bigger engines to crunch and serve up the data to services is growing exponentially. You see a LOT of correlation between “Cloud” and “Big Data” but on Big Data and “Hybrid,” where hybrid hosting is the sanest approach to the Big Data Infrastructure pro...
In his session at 18th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., and Logan Best, Infrastructure & Network Engineer at Webair, focused on real world deployments of DDoS mitigation strategies in every layer of the network. He gave an overview of methods to prevent these attacks and best practices on how to provide protection in complex cloud platforms. He also outlined what we have found in our experience managing and running thousands of Linux and Unix ...
Cloud analytics is dramatically altering business intelligence. Some businesses will capitalize on these promising new technologies and gain key insights that’ll help them gain competitive advantage. And others won’t. Whether you’re a business leader, an IT manager, or an analyst, we want to help you and the people you need to influence with a free copy of “Cloud Analytics for Dummies,” the essential guide to this explosive new space for business intelligence.
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.