Welcome!

News Feed Item

EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022

LONDON, March 20, 2014 /PRNewswire/ -- Reportbuyer.com just published a new market research report:

EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022


EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022

Summary

Overweight and obesity are characterized by abnormal or excessive fat accumulation in the body, which can increase the likelihood of developing type 2 diabetes and cardiovascular diseases. Obesity is an escalating public health problem with an increasing worldwide prevalence and has become a well-known threat to public health. As obesity is a complex condition associated with a wide range of lifestyle, genetic, social, cultural, and environmental factors, its prevalence may vary across countries, depending on the variations in these contributing factors.

GlobalData's epidemiological analysis forecasts that prevalent cases of overweight in the 9MM (US, France, Germany, Italy, Spain, UK, Japan, Brazil, and Canada) will increase from 250.05 million in 2012 to 271.86 million cases in 2022 at an annual growth rate (AGR) of 0.86%. Approximately 57% of the 250.05 million prevalent cases of overweight adults in the 9MM in 2012 were in men. GlobalData epidemiologists forecast that there were 167.39 million prevalent cases of obesity in the 9MM in 2012, which will increase to 213.34 million cases in 2022, increasing at an AGR of 2.75%. Approximately 52% of the 167.39 million prevalent cases of obese adults in the 9MM in 2012 were in women.

According to GlobalData's forecast, the prevalent cases of both overweight and obesity will increase dramatically over the next decade, with the number of obese adults increasing by an alarming 27.50%. Overweight and obesity have reached pandemic proportions; however, GlobalData epidemiologists believe that with the alarming increase in the prevalence of both overweight and obesity, the morbidity and mortality associated with the disease will continue to increase dramatically as well.

Scope

- The Overweight and Obesity EpiCast Report provides an overview of the risk factors, comorbidities, and global trends of overweight and obesity in the 9MM (US, France, Germany, Italy, Spain, UK, Japan, Brazil, and Canada). It includes a 10-year epidemiology forecast of the prevalent cases of overweight, obesity, obesity class I, obesity class II, and obesity class III segmented by sex and age. In addition, the report includes a 10-year forecast of the prevalent cases of obesity-associated comorbidities, including diagnosed diabetes, diagnosed hypertension, and dyslipidemia, among adults with overweight/obesity in some of these markets.
- The overweight and obesity epidemiology report is written and developed by Masters- and PhD-level epidemiologists.
- The EpiCast Report is in-depth, high quality, transparent and market-driven, providing expert analysis of disease trends in the 9MM.

Reasons to buy

- Develop business strategies by understanding the trends shaping and driving the global overweight and obesity market.
- Quantify patient populations in the global overweight and obesity market to improve product design, pricing, and launch plans.
- Organize sales and marketing efforts by identifying the age groups and sex that present the best opportunities for overweight and obesity therapeutics in each of the markets covered.
- Identify the number of obesity class I, obesity class II, and obesity class III prevalent cases.
1 Table of Contents
1 Table of Contents 4
1.1 List of Tables 7
1.2 List of Figures 8
2 Introduction 10
2.1 Catalyst 10
2.2 Related Reports 11
3 Epidemiology 12

3.1 Disease Overview 12
3.2 Risk Factors and Comorbidities 13
3.2.1 Family history is a strong predictor of obesity 13
3.2.2 Physical inactivity is an independent predictor of obesity 14
3.2.3 Excessive caloric intake doubles the risk for obesity 15
3.2.4 Hypertension is as high as 42% in obese adults 16
3.2.5 Dyslipidemia and type 2 diabetes are common comorbidities in obese patients 17
3.3 Global Trends 19
3.3.1 US 20
3.3.2 5EU 22
3.3.3 Japan 28
3.3.4 Brazil 29
3.3.5 Canada 31
3.4 Forecast Methodology 32
3.4.1 Sources Used 39
3.4.2 Forecast Assumptions and Methods: Prevalent Cases of Overweight, Obesity, Obesity by Class, and Comorbidities 46
3.4.3 Sources Not Used 63
3.5 Epidemiology Forecast of Overweight (2012–2022) 63
3.5.1 Prevalent Cases of Overweight 63
3.5.2 Age-Specific Prevalent Cases of Overweight 65
3.5.3 Sex-Specific Prevalent Cases of Overweight 67
3.5.4 Age-Standardized Prevalence of Overweight 70
3.6 Epidemiology Forecast of Obesity (2012–2022) 71
3.6.1 Prevalent Cases of Obesity 71
3.6.2 Age-Specific Prevalent Cases of Obesity 73

3.6.3 Sex-Specific Prevalent Cases of Obesity 75
3.6.4 Age-Standardized Prevalence of Obesity 76
3.7 Epidemiology Forecast of Obesity Class I (2012–2022) 77
3.7.1 Prevalent Cases of Obesity Class I 77
3.7.2 Age-Specific Prevalent Cases of Obesity Class I 79
3.7.3 Sex-Specific Prevalent Cases of Obesity Class I 81
3.7.4 Age-Standardized Prevalence of Obesity Class I 83
3.8 Epidemiology Forecast of Obesity Class II (2012–2022) 85
3.8.1 Prevalent Cases of Obesity Class II 85
3.8.2 Age-Specific Prevalent Cases of Obesity Class II 87
3.8.3 Sex-Specific Prevalent Cases of Obesity Class II 89
3.8.4 Age-Standardized Prevalence of Obesity Class II 91
3.9 Epidemiology Forecast of Obesity Class III (2012–2022) 93
3.9.1 Prevalent Cases of Obesity Class III 93
3.9.2 Age-Specific Prevalent Cases of Obesity Class III 95
3.9.3 Sex-Specific Prevalent Cases of Obesity Class III 97
3.9.4 Age-Standardized Prevalence of Obesity Class III 99
3.10 Epidemiology Forecast of Comorbidities among Adults with Overweight/Obesity (2012 and 2022) 101
3.10.1 Prevalent Cases of Diagnosed Diabetes among Adults with Overweight/Obesity 101
3.10.2 Prevalent Cases of Diagnosed Hypertension in Adults with Overweight/Obesity 104
3.10.3 Prevalent Cases of Dyslipidemia among Adults with Overweight/Obesity 106
3.11 Discussion 109
3.11.1 Conclusions on Epidemiological Trends 109
3.11.2 Limitations of the Analysis 110

3.11.3 Strengths of the Analysis 111
4 Appendix 112
4.1 Bibliography 112
4.2 About the Authors 118
4.2.1 Epidemiologists 118
4.2.2 Reviewers 118
4.2.3 Global Director of Epidemiology and Health Policy 119
4.2.4 Global Head of Healthcare 120
4.3 About GlobalData 121
4.4 About EpiCast 121
4.5 Disclaimer 121

1.1 List of Tables

Table 1: The WHO Classification System of Adult Overweight and Obesity According to BMI 12
Table 2: Risk Factors and Comorbidities of Obesity 13
Table 3: 9MM, Age-Adjusted and Crude Prevalence (%) of Obesity, by Sex, Ages ?20 Years, 2008 20
Table 4: JASSO and WHO Classifications of Obesity 28
Table 5: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Overweight 33
Table 6: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Obesity 34
Table 7: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Obesity Class I, Class II, and Class III 36
Table 8: Sources of Epidemiological Data Used for Forecasting the Prevalent Cases of Comorbidities in Overweight/Obese 38
Table 9: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 64
Table 10: 9MM, Prevalent Cases of Overweight, By Age, Both Sexes, N (Millions), Row (%), 2012 66
Table 11: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 68

Table 12: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 72
Table 13: 9MM, Prevalent Cases of Obesity, By Age, Both Sexes, N (Millions), Row (%), 2012 74
Table 14: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, by Sex, N (Millions), Row (%), 2012 75
Table 15: 9MM, Prevalent Cases of Obesity Class I, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 78
Table 16: 9MM, Prevalent Cases of Obesity Class I, by Age, Both Sexes, N (Millions), Row (%), 2012 80
Table 17: 9MM, Prevalent Cases of Obesity Class I, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 82
Table 18: 9MM, Prevalent Cases of Obesity Class II, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 86

Table 19: 9MM, Prevalent Cases of Obesity Class II, By Age, Both Sexes, N (Millions), Row (%), 2012 88
Table 20: 9MM, Prevalent Cases of Obesity Class II, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 90
Table 21: 9MM, Prevalent Cases of Obesity Class III, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 94
Table 22: 9MM, Prevalent Cases of Obesity Class III, By Age, Both Sexes, N (Millions), Row (%), 2012 96
Table 23: 9MM, Prevalent Cases of Obesity Class III, Ages ?18 Years, By Sex, N (Millions), Row (%), 2012 98
Table 24: 5MM*, Prevalent Cases of Diagnosed Diabetes among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 and 2022 102
Table 25: 6MM*, Prevalent Cases of Diagnosed Hypertension among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 and 2022 105
Table 26: 4MM, Prevalent Cases of Dyslipidemia* among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 and 2022 107

1.2 List of Figures

Figure 1: US, Overweight and Obesity Age-Adjusted Prevalence (%), Ages 20–74 Years, Men, 1960–2010 21
Figure 2: US, Overweight and Obesity Age-Adjusted Prevalence (%), Ages 20–74 Years, Women, 1960–2010 21
Figure 3: France, Overweight and Obesity Prevalence (%), Ages ?15 Years, Men, 1997–2006 23
Figure 4: France, Overweight and Obesity Prevalence (%), Ages ?15 Years, Women, 1997–2006 23
Figure 5: Italy, Overweight and Obesity Prevalence (%), Ages ?18, Men, 1983–2010 25
Figure 6: Italy, Overweight and Obesity Prevalence (%), Ages ?18, Men, 1983–2010 25
Figure 7: UK, Overweight and Obesity Prevalence (%), Ages ?16 Years, Men, 1993–2011 27
Figure 8: UK, Overweight and Obesity Prevalence (%), Ages ?16 Years, Women, 1993–2011 27
Figure 9: Japan, Obesity Prevalence (%), Ages ?20 Years, By Sex, 1976–2006 29
Figure 10: Brazil, Overweight and Obesity Prevalence (%), Ages ?20 Years, Men, 1975–2003 30
Figure 11: Brazil, Overweight and Obesity Prevalence (%), Ages ?20 Years, Women, 1975–2003 30
Figure 12: Canada, Obesity Prevalence (%), Ages ?18 Years, Both Sexes, 1978–2008 32
Figure 13: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 65
Figure 14: 9MM, Prevalent Cases of Overweight, by Age, Both Sexes, N (Millions), 2012 67
Figure 15: 9MM, Prevalent Cases of Overweight, Ages ?18 Years, by Sex, N (Millions), 2012 69
Figure 16: 9MM, Overweight Age-Standardized Prevalence (%), Ages ?18 Years, By Sex, 2012 71
Figure 17: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 73

Figure 18: 9MM, Prevalent Cases of Obesity, By Age, Both Sexes, N (Millions), 2012 74
Figure 19: 9MM, Prevalent Cases of Obesity, Ages ?18 Years, by Sex, N (Millions), 2012 76
Figure 20: 9MM, Obesity Age-Standardized Prevalence (%), Ages ?18 Years, By Sex, 2012 77
Figure 21: 9MM*, Prevalent Cases of Obesity Class I, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 79
Figure 22: 9MM*, Prevalent Cases of Obesity Class I, By Age, Both Sexes, N (Millions), 2012 81
Figure 23: 9MM*, Prevalent Cases of Obesity Class I, Ages ?18 Years, by Sex, N (Millions), 2012 83
Figure 24: 9MM*, Obesity Class I Age-Standardized Prevalence (%), Ages ?18 Years, by Sex, 2012 84
Figure 25: 9MM*, Prevalent Cases of Obesity Class II, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 87
Figure 26: 9MM*, Prevalent Cases of Obesity Class II, By Age, Both Sexes, N (Millions), 2012 89
Figure 27: 9MM*, Prevalent Cases of Obesity Class II, Ages ?18 Years, by Sex, N (Millions), 2012 91
Figure 28: 9MM*, Age-Standardized Prevalence (%) of Obesity Class II, Ages ?18 Years, By Sex, 2012 92
Figure 29: 9MM*, Prevalent Cases of Obesity Class III, Ages ?18 Years, Both Sexes, N (Millions), 2012–2022 95
Figure 30: 9MM*, Prevalent Cases of Obesity Class III, By Age, Both Sexes, N (Millions), 2012 97
Figure 31: 9MM*, Prevalent Cases of Obesity Class III, Ages ?18 Years, By Sex, N (Millions), 2012 99
Figure 32: 9MM*, Obesity Class III Age-Standardized Prevalence (%), Ages ?18 Years, By Sex, 2012 100
Figure 33: 5MM*, Prevalent Cases of Diagnosed Diabetes among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 103
Figure 34: 6MM*, Prevalent Cases of Diagnosed Hypertension among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 106
Figure 35: 4MM*, Prevalent Cases of Dyslipidemia** among Adults with Overweight/Obesity, Both Sexes, N (Millions), 2012 108

Read the full report:
EpiCast Report: Overweight and Obesity - Epidemiology Forecast to 2022
http://www.reportbuyer.com/pharma_healthcare/diseases/epicast_report_overweight_obesity_epidemiology_forecast_2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Pathology

For more information:
Sarah Smith
Research Advisor at Reportbuyer.com  
Email: [email protected]  
Tel: +44 208 816 85 48
Website: www.reportbuyer.com

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
"ZeroStack is a startup in Silicon Valley. We're solving a very interesting problem around bringing public cloud convenience with private cloud control for enterprises and mid-size companies," explained Kamesh Pemmaraju, VP of Product Management at ZeroStack, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
"CA has been doing a lot of things in the area of DevOps. Now we have a complete set of tool sets in order to enable customers to go all the way from planning to development to testing down to release into the operations," explained Aruna Ravichandran, Vice President of Global Marketing and Strategy at CA Technologies, in this SYS-CON.tv interview at DevOps Summit at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"There's plenty of bandwidth out there but it's never in the right place. So what Cedexis does is uses data to work out the best pathways to get data from the origin to the person who wants to get it," explained Simon Jones, Evangelist and Head of Marketing at Cedexis, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
Gemini is Yahoo’s native and search advertising platform. To ensure the quality of a complex distributed system that spans multiple products and components and across various desktop websites and mobile app and web experiences – both Yahoo owned and operated and third-party syndication (supply), with complex interaction with more than a billion users and numerous advertisers globally (demand) – it becomes imperative to automate a set of end-to-end tests 24x7 to detect bugs and regression. In th...
Enterprises are moving to the cloud faster than most of us in security expected. CIOs are going from 0 to 100 in cloud adoption and leaving security teams in the dust. Once cloud is part of an enterprise stack, it’s unclear who has responsibility for the protection of applications, services, and data. When cloud breaches occur, whether active compromise or a publicly accessible database, the blame must fall on both service providers and users. In his session at 21st Cloud Expo, Ben Johnson, C...
"Infoblox does DNS, DHCP and IP address management for not only enterprise networks but cloud networks as well. Customers are looking for a single platform that can extend not only in their private enterprise environment but private cloud, public cloud, tracking all the IP space and everything that is going on in that environment," explained Steve Salo, Principal Systems Engineer at Infoblox, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventio...
Data scientists must access high-performance computing resources across a wide-area network. To achieve cloud-based HPC visualization, researchers must transfer datasets and visualization results efficiently. HPC clusters now compute GPU-accelerated visualization in the cloud cluster. To efficiently display results remotely, a high-performance, low-latency protocol transfers the display from the cluster to a remote desktop. Further, tools to easily mount remote datasets and efficiently transfer...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"MobiDev is a software development company and we do complex, custom software development for everybody from entrepreneurs to large enterprises," explained Alan Winters, U.S. Head of Business Development at MobiDev, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...