News Feed Item

Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players

NEW YORK, April 3, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players
http://www.reportlinker.com/p02063307/Energy-Harvesting-and-Storage-for-Electronic-Devices-2014-2024-Forecasts-Technologies-Players .html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Broadband

Energy harvesting is the process by which ambient energy is captured and converted into electricity for small autonomous devices, such as satellites, laptops and nodes in sensor networks making them self-sufficient. Although energy harvesting applications reach from vehicles to the smart grid, the majority of the value this year is in consumer electronic applications, where energy harvesters have been used for some time.

Energy harvesting, otherwise known as power harvesting or energy scavenging includes photovoltaics, thermovoltaics, piezoelectrics and electrodynamics, among other options, which are now being used in a wide variety of applications. The technology has reached a tipping point, because the necessary lower power electronics and more efficient energy gathering and storage are now sufficiently affordable, reliable and longer lived for a huge number of applications to be practicable.

From wind-up laptops for Africa, wireless light switches working from the power of your finger and wireless sensors in oil fields monitoring equipment power by vibration - these are all in use now with many more applications emerging.

Market segments using Energy Harvesting

This report covers the following market segments with detailed ten year forecasts of each:

- Wristwatches
- Bicycle dynamo
- Laptops, e-books
- Mobile phones
- Other portable consumer electronics - Calculators, toys, piezo gas lighters, electronic car keys, electronic apparel etc
- Wireless sensor mesh networks
- Other Industrial -Mainly buildings, machinery, engines, non-meshed wireless sensors and actuators
- Military and aerospace excluding WSN
- Healthcare - Implants, disposable testers and drug delivery etc
- Other - Research, animals, farming etc

Energy harvesting by technology type

This year, most of the harvesters used in the above market segments are solar cells followed by electrodynamos, two relatively mature energy harvesting technologies. However, many new technologies are now taking some market share enabling power in areas not possible before. This includes thermoelectrics - generating power from heat - where organisations such as the Department of Energy in the US are working with BMW and GM to turn heat waste from engines and exhaust into power for the vehicle's electrical systems. NASA use thermoelectrics to power Mars rovers where they work without light, unlike solar cells. Piezoelectric energy harvesters are also of great interest due to their small form factor and high efficiency. In 2022, these four energy harvester types will have near similar market share for industrial sensing applications. However, even by then solar will continue to dominate for consumer applications.

For the first time, this unique report looks at the global situation. It covers the progress of more than 350 organizations in 22 countries and gives detailed case studies. Market forecasts are provided for everything from self-sufficient wristwatches to mobile phones that will never need a charger and light switches and controls that have no wiring and no batteries when fitted in buildings to wireless sensors power from the environment they are placed in.

However, there are further mountains to climb in order to achieve self-powered wireless sensors monitoring forest fires, pollution spillages and even inside the human body and in the concrete of buildings. These applications will become commonplace one day. Even devices with maintenance-free life of hundreds of years can now be envisaged. Meanwhile, bionic man containing maintenance free, self-powered devices for his lifetime is an objective for the next few years. IDTechEx find that the total market for energy harvesting devices, including everything from wristwatches to wireless sensors will rise to over $2.6 billion in 2024.

How do these things work? Which technologies have the most potential now and in the future? What are the advantages and disadvantages of each? Which countries have the most active programs and why? What are the leading universities, developers, manufacturers and other players up to? What alliances exist? What are the timelines for success? All these questions and more are answered in this report.
1.1. Market forecast 2014-2024
1.2. Technology sector forecasts for Energy Harvesting 2014-2024
1.3. Regenerative braking
2.1. What is energy harvesting?
2.2. What it is not
2.3. Energy harvesting compared with alternatives

2.4. Power requirements of different devices
3.1. Thermoelectric energy harvesting
3.1.1. Technology and scientific principles
3.1.2. Designing for thermoelectric applications
3.1.3. Thin Film Thermoelectric Generators
3.1.4. Material choices
3.2. Applications
3.2.1. Automotive Applications
3.3. Wireless Sensing
3.3.1. TE-CORE
3.3.2. WiTemp
3.4. Other industrial applications
3.5. Aerospace
3.6. Wearable thermoelectrics
3.7. Consumer applications
3.7.2. PowerPot™
4.1. Technology and scientific principles
4.1.1. What is piezoelectric energy harvesting?
4.1.2. How piezoelectricity works

4.1.3. How piezoelectric materials are made
4.1.4. PZT - leading piezoelectric material used today
4.1.5. Single Crystal Piezo
4.1.6. Piezo Fibre Composites PFCs and IDEPFC
4.2. Piezoelectrics as an energy harvester
4.3. Vibration harvesting
4.3.1. Wideband
4.3.2. Damping
4.3.3. Remote controllers
4.4. Movement harvesting options
4.5. Applications
4.5.1. Consumer Electronics
4.5.2. Energy harvesting for Vehicles
4.5.3. Application Case Study: Piezo Power Source for tyre pressure monitoring
4.5.4. Healthcare
4.5.5. Powering Wireless Sensors
4.5.6. Switching and Lighting: Piezoelectric Energy harvesting
5.1. Technologies and scientific principles
5.1.1. Organic PV
5.2. Efficiency

5.2.1. Ways to improve the efficiency
5.3. DSSC (dye sensitized solar cells)
5.3.2. Solid State DSSCs
5.3.3. Applications
6.1. Technology and scientific principles
6.1.1. Applications
7.1. 3G Solar
7.2. Advanced Cerametrics
7.3. Agency for Defense Development
7.4. AIST Tsukuba
7.5. Algra
7.6. Ambient Research
7.7. AmbioSystems LLC
7.8. Amerigon-BSST
7.9. Applied Digital Solutions
7.10. Arveni
7.11. Australian National University - Department of Engineering
7.12. Boeing

7.13. California Institute of Technology/Jet Propulsion Laboratory
7.14. Cambrian Innovation (formerly IntAct)
7.15. Canova Tech
7.16. Carnegie Mellon University
7.17. Chinese University of Hong Kong
7.18. CSIRO
7.19. Cymtox Ltd
7.20. DisaSolar
7.21. Drexel University
7.22. Dyesol
7.23. East Japan Railway Company
7.24. EDF R&D
7.25. Eight19
7.26. Electronics and Telecommunications Research Institute (ETRI)

7.27. Ember Corporation
7.28. Encrea srl
7.29. European Space Agency
7.30. EVERREDtronics
7.31. Fast Trak Ltd
7.32. Ferro Solutions, Inc.
7.33. Ferrotec
7.34. Fraunhofer IKTS
7.35. Fraunhofer Institut Integrierte Schaltungen
7.36. Freeplay Foundation
7.37. Fujikura
7.38. G24i Power
7.39. Ganssle Group
7.40. Gas Sensing Solution Ltd
7.41. General Electric Company
7.42. Georgia Institute of Technology
7.43. Global Thermoelectric
7.44. GreenPeak Technologies
7.45. greenTEG
7.46. Harvard University
7.47. Heliatek GmbH

7.48. Henkel
7.49. Hi-Tech Wealth
7.50. Holst Centre
7.51. Honeywell
7.52. Idaho National Laboratory
7.53. IMEC
7.54. Imperial College
7.55. Imperial College London
7.56. India Space Research Organisation
7.57. Intel
7.58. ITRI (Industrial Technology Research Institute)
7.59. ITT
7.60. Japan Aerospace Exploration Agency
7.61. JX Nippon Oil and Gas

7.62. Kanazawa University
7.63. KCF Technologies Inc
7.64. Kinergi Pty Ltd
7.65. Kinetron BV
7.66. Konarka
7.67. Kookmin University,
7.68. Korea Electronics Company
7.69. Korea Institute of Science and Technology and Korea Research Institute of Chemical Technology
7.70. Laird / Nextreme
7.71. Lawrence Livermore National Laboratory
7.72. Lear Corporation
7.73. Lebônê Solutions
7.74. Lockheed Martin Corporation
7.75. LV Sensors, Inc.
7.76. Marlow
7.77. Massachusetts Institute of Technology
7.78. mc10
7.79. Meggitt Sensing Systems
7.80. Michigan Technological University

7.81. Microdul AG
7.82. Microgen
7.83. Micropelt GmbH
7.84. Microsemi
7.85. MicroStrain Inc.
7.86. Midé Technology Corporation
7.87. Mitsubishi Corporation
7.88. Nanosonic Inc
7.89. NASA
7.90. National Institute of Advanced Industrial Science & Technology (AIST)
7.91. National Renewable Energy Lab (USA)
7.92. National Semiconductor
7.93. Nextreme
7.94. Nissha Printing
7.95. NNL - Universita del Salento
7.96. Nokia Cambridge UK Research Centre
7.97. North Carolina State University
7.98. Northeastern University
7.99. Northwestern University
7.100. Nova Mems
7.102. Oak Ridge National Laboratory
7.103. Ohio State University

7.104. Omron Corporation
7.105. Oxford Photovoltaics
7.106. Pavegen
7.107. Perpetua
7.108. Perpetuum Ltd
7.109. Plextronics
7.110. Polatis Photonics
7.111. PowerFilm, Inc.
7.112. POWERLeap
7.113. PulseSwitch Systems
7.114. Rockwell Scientific
7.115. Romny Scientific
7.116. Rosemount, Inc.
7.117. Samsung SDI
7.118. Sandia National Laboratory
7.119. Scuola Superiore Sant'Anna
7.120. Seiko
7.121. Shanghai Jiao Tong University
7.122. SHARP
7.123. Siemens Power Generation
7.124. Simon Fraser University

7.125. Smart Material Corp.
7.126. SMH
7.127. Solarmer
7.128. Solaronix
7.129. SolarPress
7.130. SolarPrint
7.131. Solid State Research inc
7.132. Sony
7.133. SONY Technology Centre
7.134. Southampton University Hospital
7.135. SPAWAR
7.136. Spectrolab Inc
7.137. Syngenta Sensors UIC
7.138. Technical University of Denmark
7.139. Tellurex
7.140. Texas Micropower
7.141. The Technology Partnership
7.142. Thermolife Energy Corporation
7.143. TiSol
7.144. Tokyo Institute of Technology
7.145. Trophos Energy
7.146. TRW Conekt
7.147. TU ILmenau, Fachgebiet Experimantalphysik I
7.148. Tyndall National Institute
7.149. University of Bristol
7.150. University of California Berkeley
7.151. University of California Los Angeles
7.152. University of Edinburgh
7.153. University of Erlangen

7.154. University of Florida
7.155. University of Freiburg - IMTEK
7.156. University of Idaho
7.157. University of Manchester
7.158. University of Michigan
7.159. University of Pittsburgh
7.160. University of Princeton
7.161. University of Southampton
7.162. University of Surrey (UK)
7.163. University of Tokyo
7.164. Uppsala University
7.165. US Army Research Laboratory
7.166. Virginia Tech
7.167. Voltaic Systems Inc
7.168. Wireless Industrial Technologies
7.169. ZMD AG
8.1. Promoters
8.1.1. BSC Computer GmbH - Germany
8.1.2. EnOcean -Germany
8.1.3. Leviton - United States
8.1.4. Masco - United States
8.1.5. MK Electric (a Honeywell Business) - United Kingdom
8.1.6. Omnio - Switzerland
8.1.7. OPUS greenNet - Germany
8.1.8. Texas Instruments - United States
8.1.9. Thermokon Sensortechnik - Germany
8.2. Participants

8.2.1. ACTE .PL
8.2.2. Ad Hoc Electronics - United States
8.2.3. Atlas Group
8.2.4. b.a.b technologie GmbH - Germany
8.2.5. Beckhoff - Germany
8.2.6. bk-electronic GmbH
8.2.7. BootUp GmbH - Switzerland
8.2.8. BSC Computer GmbH
8.2.9. Cozir - United Kindom
8.2.10. Denro - Germany
8.2.11. Distech Controls - Canada
8.2.12. DRSG
8.2.13. EchoFlex Solutions
8.2.14. EHRT
8.2.15. Elsner Elektronik - Germany
8.2.16. Eltako GmbH
8.2.17. Emerge Alliance
8.2.18. Ex-Or - United Kindom
8.2.19. Funk Technik - Germany
8.2.20. GE Energy - United States
8.2.21. GFR - Germany
8.2.22. Hansgrohe Group - Germany
8.2.23. Hautau - Germany
8.2.24. HESCH - Germany
8.2.25. Hoppe - Germany
8.2.26. Hotel Technology Next Generation - United States
8.2.27. IK Elektronik GmbH - Germany
8.2.28. ILLUMRA - United States

8.2.29. INSYS Electronics
8.2.30. Intesis Software SL - Spain
8.2.31. IP Controls - Germany
8.2.32. Jager Direkt GmbH & Co
8.2.33. Kieback&Peter GmbH & Co. KG - Germany
8.2.34. LonMark International
8.2.35. Lutuo - China
8.2.36. Magnum Energy Solutions LLC - United States
8.2.37. Murata Europe - Germany
8.2.38. Osram
8.2.39. Osram Silvania
8.2.40. OVERKIZ - Germany
8.2.41. PEHA
8.2.42. PEHA - Germany
8.2.43. PROBARE
8.2.44. Regulvar
8.2.45. Reliable Controls - Canada
8.2.46. S+S Regeltechnik
8.2.47. S4 Group - United States
8.2.48. Sauter
8.2.49. Schulte Elektrotechnik GmbH & Co. KG
8.2.50. SCL Elements Inc - Canada
8.2.51. SensorDynamics AG
8.2.52. Servodan A/S
8.2.53. Shaspa - United Kingdom
8.2.54. Siemens Building Technologies - Switzerland
8.2.55. Siemens Building Technologies GmbH & Co
8.2.56. SmartHome Initiative - Germany

8.2.57. SOMMER - Germany
8.2.58. Spartan Peripheral Devices - Canada
8.2.59. Spega - Germany
8.2.60. steute Schaltgeräte GmbH & Co. KG
8.2.61. Texas Instruments
8.2.62. Titus - United States
8.2.63. Unitronic AG Zentrale - Germany
8.2.64. Unotech A/S - Denmark
8.2.65. USNAP - United States
8.2.66. Vicos - Austria
8.2.67. Viessmann Group - Germany
8.2.68. Vossloh-Schwabe - Germany
8.2.69. WAGO Kontakttechnik GmbH & Co. KG - Germany
8.2.70. Wieland Electric GmbH - Germany
8.2.71. YTL Technologies - China
8.2.72. Zumtobel Lighting GmbH - Austria
8.3. Associates
8.3.1. A. & H. MEYER GmbH - Germany
8.3.2. ABC Shop 24 - Germany
8.3.3. Active Business Company GmbH
8.3.4. Akktor GmbH - Germany
8.3.5. Alvi Technologies
8.3.6. ASP Automação - Brazil
8.3.7. Axis Lighting - Canada
8.3.8. Biberach University of Applied Sciences
8.3.9. bmd AG -Switzerland
8.3.10. BMS Systems
8.3.11. Building Intelligence Group LLC - United States

8.3.12. CAO Group, Inc. - United States
8.3.13. Circuit Holding - Egypt
8.3.14. Com-Pacte - France
8.3.15. Cymbet - United States
8.3.16. Dauphin - Germany
8.3.17. DigiTower Cologne
8.3.18. DimOnOff - Canada
8.3.19. Distech Controls
8.3.20. Dogma Living Technology - Greece
8.3.21. Elektro-Systeme Matthias Friedl - Germany
8.3.22. Elka Hugo Krischke GmbH - Germany
8.3.23. Encelium Technologies - United States
8.3.24. Energie Agentur
8.3.25. enexoma AG - Germany
8.3.26. Engenuity Systems
8.3.27. Engenuity Systems - United States
8.3.28. Engineered Tax Services - United States
8.3.29. EnOcean GmbH
8.3.30. Enolzu - Spain
8.3.31. Enotech - Denmark
8.3.32. ESIC Technology & Sourcing Co., Ltd.
8.3.33. Functional Devices Inc. - United States

8.3.34. Gesteknik
8.3.35. Green Link Alliance
8.3.36. Gruppo Giordano - Italian
8.3.37. Hagemeyer - Germany
8.3.38. HBC Hochschule Biberach - Germany
8.3.39. Herbert Waldmann GmbH & Co. KG - Germany
8.3.40. Hermos - Germany
8.3.41. HK Instruments - Finland
8.3.42. Hochschule Luzern - Technik & Architektur - Switzerland
8.3.43. I.M. tecnics - Spain
8.3.44. Indie Energy - United States
8.3.45. Infinite Power Solutions, Inc. - United States
8.3.46. Ingenieurbüro Knab GmbH - Germany
8.3.47. Ingenieurbüro Zink GmbH
8.3.48. Ingenieurbüro Zink GmbH - Germany
8.3.49. INGLAS Innovative Glassysteme GmbH & Co. KG
8.3.50. Interior Automation - United Kingdom
8.3.51. Ivory Egg - United Kingdom
8.3.52. Kaga Electronics - Japan
8.3.53. KIB Projekt GmbH
8.3.54. Korea Electronics Technology Institute (KETI) - Korea

8.3.55. KVL Comp Ltd.
8.3.56. Ledalite - Canada
8.3.57. LessWire, LLC
8.3.58. Lighting Control & Design - United States
8.3.59. LogiCO2 International SARL. - Luxembourg
8.3.60. Masco
8.3.61. Mitsubishi Materials Corporation - United States
8.3.62. MK Electric (a Honeywell Business)
8.3.63. MONDIAL Electronic GmbH - Austria
8.3.64. Moritani - Japan
8.3.65. Moritani and Co Ltd
8.3.66. MW-Elektroanlagen - Germany
8.3.67. myDATA - Germany
8.3.68. Nibblewave - France
8.3.69. OBERMEYER Planen + Beraten GmbH - Germany
8.3.70. Omnio
8.3.71. Orkit Building Intelligence
8.3.72. Pohlmann Funkbussystems - Germany
8.3.73. PressFinish GmbH - Germany
8.3.74. Prulite Ltd - United States
8.3.75. Pyrecap - France
8.3.77. R+S Group - Germany
8.3.78. SANYO Semiconductor LLC. - United States
8.3.79. SAT Herbert GmbH
8.3.80. SAT System- und Anlagentechnik Herbert GmbH
8.3.81. Seamless Sensing - United Kingdom
8.3.82. Selmoni - Switzerland

8.3.83. Sensocasa - Germany
8.3.84. Seven Line Control Systems - France
8.3.85. SIFRI, S.L. - Spain
8.3.86. SmartLiving Asia - Hong Kong
8.3.87. Spittler Lichttechnik GmbH - Germany
8.3.88. Spoon2 International Limited - United Kingdom
8.3.89. Steinbeis Transferzentrum für Embedded Design und Networking
8.3.90. StyliQ - Germany
8.3.91. STZEDN - Germany
8.3.92. Suffice Group - Hong Kong
8.3.93. Tambient
8.3.94. Tambient - United States
8.3.95. Technograph Microcircuits Ltd
8.3.96. Teleprofi-Verbindet - Germany
8.3.97. Thermokon - Danelko Elektronik AB - Sweden
8.3.98. ThermoKon Sensortechnik
8.3.99. t-mac Technologies Limited - United Kingdom
8.3.100. Tridum - United States
8.3.101. TRILUX GmbH & Co. KG - Germany

8.3.102. Unitronic AG Zentrale
8.3.103. Vicos
8.3.104. Vity Technology - Hong Kong
8.3.105. WAGO Kontakttechnik GmbH & Co. KG
8.3.106. WeberHaus - Germany
8.3.107. Web-IT - Germany
8.3.108. WelComm - United States
8.3.109. Wieland Electric GmbH
8.3.110. WIT - France
8.3.111. WM Ocean - Czech Republic
8.3.112. Yongfu - Singapore
8.3.113. Zurich University of Applied Science (ZHAW) - Switzerland
9.1. Forecasts for energy harvesting markets
9.1.1. Addressable markets and price sensitivity
9.1.2. IDTechEx energy harvesting forecasts 2014-2024
9.2. Technology sector forecasts for energy harvesting 2014-2024
9.2.1. Timeline for widespread deployment of energy harvesting
9.2.2. Which technologies win?
9.3. Wireless Sensor Networks 2010-2022
9.4. IDTechEx forecast for 2032
9.5. Bicycle dynamo market

To order this report: Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players
http://www.reportlinker.com/p02063307/Energy-Harvesting-and-Storage-for-Electronic-Devices-2014-2024-Forecasts-Technologies-Players .html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Broadband

Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
So you think you are a DevOps warrior, huh? Put your money (not really, it’s free) where your metrics are and prove it by taking The Ultimate DevOps Geek Quiz Challenge, sponsored by DevOps Summit. Battle through the set of tough questions created by industry thought leaders to earn your bragging rights and win some cool prizes.
Today every business relies on software to drive the innovation necessary for a competitive edge in the Application Economy. This is why collaboration between development and operations, or DevOps, has become IT’s number one priority. Whether you are in Dev or Ops, understanding how to implement a DevOps strategy can deliver faster development cycles, improved software quality, reduced deployment times and overall better experiences for your customers.
The security needs of IoT environments require a strong, proven approach to maintain security, trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vic...
Cloud based infrastructure deployment is becoming more and more appealing to customers, from Fortune 500 companies to SMEs due to its pay-as-you-go model. Enterprise storage vendors are able to reach out to these customers by integrating in cloud based deployments; this needs adaptability and interoperability of the products confirming to cloud standards such as OpenStack, CloudStack, or Azure. As compared to off the shelf commodity storage, enterprise storages by its reliability, high-availabil...
In the next forty months – just over three years – businesses will undergo extraordinary changes. The exponential growth of digitization and machine learning will see a step function change in how businesses create value, satisfy customers, and outperform their competition. In the next forty months companies will take the actions that will see them get to the next level of the game called Capitalism. Or they won’t – game over. The winners of today and tomorrow think differently, follow different...
The IoT industry is now at a crossroads, between the fast-paced innovation of technologies and the pending mass adoption by global enterprises. The complexity of combining rapidly evolving technologies and the need to establish practices for market acceleration pose a strong challenge to global enterprises as well as IoT vendors. In his session at @ThingsExpo, Clark Smith, senior product manager for Numerex, will discuss how Numerex, as an experienced, established IoT provider, has embraced a ...
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in Embedded and IoT solutions, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 7-9, 2017, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and ...
The Internet of Things (IoT), in all its myriad manifestations, has great potential. Much of that potential comes from the evolving data management and analytic (DMA) technologies and processes that allow us to gain insight from all of the IoT data that can be generated and gathered. This potential may never be met as those data sets are tied to specific industry verticals and single markets, with no clear way to use IoT data and sensor analytics to fulfill the hype being given the IoT today.
Without lifecycle traceability and visibility across the tool chain, stakeholders from Planning-to-Ops have limited insight and answers to who, what, when, why and how across the DevOps lifecycle. This impacts the ability to deliver high quality software at the needed velocity to drive positive business outcomes. In his general session at @DevOpsSummit at 19th Cloud Expo, Eric Robertson, General Manager at CollabNet, will discuss how customers are able to achieve a level of transparency that e...
Donna Yasay, President of HomeGrid Forum, today discussed with a panel of technology peers how certification programs are at the forefront of interoperability, and the answer for vendors looking to keep up with today's growing industry for smart home innovation. "To ensure multi-vendor interoperability, accredited industry certification programs should be used for every product to provide credibility and quality assurance for retail and carrier based customers looking to add ever increasing num...
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
The Open Connectivity Foundation (OCF), sponsor of the IoTivity open source project, and AllSeen Alliance, which provides the AllJoyn® open source IoT framework, today announced that the two organizations’ boards have approved a merger under the OCF name and bylaws. This merger will advance interoperability between connected devices from both groups, enabling the full operating potential of IoT and representing a significant step towards a connected ecosystem.
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...