Welcome!

News Feed Item

Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players

NEW YORK, April 3, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players
http://www.reportlinker.com/p02063307/Energy-Harvesting-and-Storage-for-Electronic-Devices-2014-2024-Forecasts-Technologies-Players .html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Broadband

Energy harvesting is the process by which ambient energy is captured and converted into electricity for small autonomous devices, such as satellites, laptops and nodes in sensor networks making them self-sufficient. Although energy harvesting applications reach from vehicles to the smart grid, the majority of the value this year is in consumer electronic applications, where energy harvesters have been used for some time.

Energy harvesting, otherwise known as power harvesting or energy scavenging includes photovoltaics, thermovoltaics, piezoelectrics and electrodynamics, among other options, which are now being used in a wide variety of applications. The technology has reached a tipping point, because the necessary lower power electronics and more efficient energy gathering and storage are now sufficiently affordable, reliable and longer lived for a huge number of applications to be practicable.

From wind-up laptops for Africa, wireless light switches working from the power of your finger and wireless sensors in oil fields monitoring equipment power by vibration - these are all in use now with many more applications emerging.

Market segments using Energy Harvesting

This report covers the following market segments with detailed ten year forecasts of each:

- Wristwatches
- Bicycle dynamo
- Laptops, e-books
- Mobile phones
- Other portable consumer electronics - Calculators, toys, piezo gas lighters, electronic car keys, electronic apparel etc
- Wireless sensor mesh networks
- Other Industrial -Mainly buildings, machinery, engines, non-meshed wireless sensors and actuators
- Military and aerospace excluding WSN
- Healthcare - Implants, disposable testers and drug delivery etc
- Other - Research, animals, farming etc

Energy harvesting by technology type

This year, most of the harvesters used in the above market segments are solar cells followed by electrodynamos, two relatively mature energy harvesting technologies. However, many new technologies are now taking some market share enabling power in areas not possible before. This includes thermoelectrics - generating power from heat - where organisations such as the Department of Energy in the US are working with BMW and GM to turn heat waste from engines and exhaust into power for the vehicle's electrical systems. NASA use thermoelectrics to power Mars rovers where they work without light, unlike solar cells. Piezoelectric energy harvesters are also of great interest due to their small form factor and high efficiency. In 2022, these four energy harvester types will have near similar market share for industrial sensing applications. However, even by then solar will continue to dominate for consumer applications.

For the first time, this unique report looks at the global situation. It covers the progress of more than 350 organizations in 22 countries and gives detailed case studies. Market forecasts are provided for everything from self-sufficient wristwatches to mobile phones that will never need a charger and light switches and controls that have no wiring and no batteries when fitted in buildings to wireless sensors power from the environment they are placed in.

However, there are further mountains to climb in order to achieve self-powered wireless sensors monitoring forest fires, pollution spillages and even inside the human body and in the concrete of buildings. These applications will become commonplace one day. Even devices with maintenance-free life of hundreds of years can now be envisaged. Meanwhile, bionic man containing maintenance free, self-powered devices for his lifetime is an objective for the next few years. IDTechEx find that the total market for energy harvesting devices, including everything from wristwatches to wireless sensors will rise to over $2.6 billion in 2024.

How do these things work? Which technologies have the most potential now and in the future? What are the advantages and disadvantages of each? Which countries have the most active programs and why? What are the leading universities, developers, manufacturers and other players up to? What alliances exist? What are the timelines for success? All these questions and more are answered in this report.
1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Market forecast 2014-2024
1.2. Technology sector forecasts for Energy Harvesting 2014-2024
1.3. Regenerative braking
2. INTRODUCTION
2.1. What is energy harvesting?
2.2. What it is not
2.3. Energy harvesting compared with alternatives

2.4. Power requirements of different devices
3. ENERGY HARVESTING TECHNOLOGIES AND THEIR APPLICATIONS
3.1. Thermoelectric energy harvesting
3.1.1. Technology and scientific principles
3.1.2. Designing for thermoelectric applications
3.1.3. Thin Film Thermoelectric Generators
3.1.4. Material choices
3.2. Applications
3.2.1. Automotive Applications
3.3. Wireless Sensing
3.3.1. TE-CORE
3.3.2. WiTemp
3.4. Other industrial applications
3.5. Aerospace
3.6. Wearable thermoelectrics
3.7. Consumer applications
3.7.2. PowerPot™
4. PIEZOELECTRIC ENERGY HARVESTING
4.1. Technology and scientific principles
4.1.1. What is piezoelectric energy harvesting?
4.1.2. How piezoelectricity works

4.1.3. How piezoelectric materials are made
4.1.4. PZT - leading piezoelectric material used today
4.1.5. Single Crystal Piezo
4.1.6. Piezo Fibre Composites PFCs and IDEPFC
4.2. Piezoelectrics as an energy harvester
4.3. Vibration harvesting
4.3.1. Wideband
4.3.2. Damping
4.3.3. Remote controllers
4.4. Movement harvesting options
4.5. Applications
4.5.1. Consumer Electronics
4.5.2. Energy harvesting for Vehicles
4.5.3. Application Case Study: Piezo Power Source for tyre pressure monitoring
4.5.4. Healthcare
4.5.5. Powering Wireless Sensors
4.5.6. Switching and Lighting: Piezoelectric Energy harvesting
5. SOLAR ENERGY HARVESTING
5.1. Technologies and scientific principles
5.1.1. Organic PV
5.2. Efficiency

5.2.1. Ways to improve the efficiency
5.3. DSSC (dye sensitized solar cells)
5.3.2. Solid State DSSCs
5.3.3. Applications
6. ELECTRODYNAMIC ENERGY HARVESTING
6.1. Technology and scientific principles
6.1.1. Applications
7. PROFILES OF PARTICIPANTS IN 22 COUNTRIES
7.1. 3G Solar
7.2. Advanced Cerametrics
7.3. Agency for Defense Development
7.4. AIST Tsukuba
7.5. Algra
7.6. Ambient Research
7.7. AmbioSystems LLC
7.8. Amerigon-BSST
7.9. Applied Digital Solutions
7.10. Arveni
7.11. Australian National University - Department of Engineering
7.12. Boeing

7.13. California Institute of Technology/Jet Propulsion Laboratory
7.14. Cambrian Innovation (formerly IntAct)
7.15. Canova Tech
7.16. Carnegie Mellon University
7.17. Chinese University of Hong Kong
7.18. CSIRO
7.19. Cymtox Ltd
7.20. DisaSolar
7.21. Drexel University
7.22. Dyesol
7.23. East Japan Railway Company
7.24. EDF R&D
7.25. Eight19
7.26. Electronics and Telecommunications Research Institute (ETRI)

7.27. Ember Corporation
7.28. Encrea srl
7.29. European Space Agency
7.30. EVERREDtronics
7.31. Fast Trak Ltd
7.32. Ferro Solutions, Inc.
7.33. Ferrotec
7.34. Fraunhofer IKTS
7.35. Fraunhofer Institut Integrierte Schaltungen
7.36. Freeplay Foundation
7.37. Fujikura
7.38. G24i Power
7.39. Ganssle Group
7.40. Gas Sensing Solution Ltd
7.41. General Electric Company
7.42. Georgia Institute of Technology
7.43. Global Thermoelectric
7.44. GreenPeak Technologies
7.45. greenTEG
7.46. Harvard University
7.47. Heliatek GmbH

7.48. Henkel
7.49. Hi-Tech Wealth
7.50. Holst Centre
7.51. Honeywell
7.52. Idaho National Laboratory
7.53. IMEC
7.54. Imperial College
7.55. Imperial College London
7.56. India Space Research Organisation
7.57. Intel
7.58. ITRI (Industrial Technology Research Institute)
7.59. ITT
7.60. Japan Aerospace Exploration Agency
7.61. JX Nippon Oil and Gas

7.62. Kanazawa University
7.63. KCF Technologies Inc
7.64. Kinergi Pty Ltd
7.65. Kinetron BV
7.66. Konarka
7.67. Kookmin University,
7.68. Korea Electronics Company
7.69. Korea Institute of Science and Technology and Korea Research Institute of Chemical Technology
7.70. Laird / Nextreme
7.71. Lawrence Livermore National Laboratory
7.72. Lear Corporation
7.73. Lebônê Solutions
7.74. Lockheed Martin Corporation
7.75. LV Sensors, Inc.
7.76. Marlow
7.77. Massachusetts Institute of Technology
7.78. mc10
7.79. Meggitt Sensing Systems
7.80. Michigan Technological University

7.81. Microdul AG
7.82. Microgen
7.83. Micropelt GmbH
7.84. Microsemi
7.85. MicroStrain Inc.
7.86. Midé Technology Corporation
7.87. Mitsubishi Corporation
7.88. Nanosonic Inc
7.89. NASA
7.90. National Institute of Advanced Industrial Science & Technology (AIST)
7.91. National Renewable Energy Lab (USA)
7.92. National Semiconductor
7.93. Nextreme
7.94. Nissha Printing
7.95. NNL - Universita del Salento
7.96. Nokia Cambridge UK Research Centre
7.97. North Carolina State University
7.98. Northeastern University
7.99. Northwestern University
7.100. Nova Mems
7.101. NTT DOCOMO
7.102. Oak Ridge National Laboratory
7.103. Ohio State University

7.104. Omron Corporation
7.105. Oxford Photovoltaics
7.106. Pavegen
7.107. Perpetua
7.108. Perpetuum Ltd
7.109. Plextronics
7.110. Polatis Photonics
7.111. PowerFilm, Inc.
7.112. POWERLeap
7.113. PulseSwitch Systems
7.114. Rockwell Scientific
7.115. Romny Scientific
7.116. Rosemount, Inc.
7.117. Samsung SDI
7.118. Sandia National Laboratory
7.119. Scuola Superiore Sant'Anna
7.120. Seiko
7.121. Shanghai Jiao Tong University
7.122. SHARP
7.123. Siemens Power Generation
7.124. Simon Fraser University

7.125. Smart Material Corp.
7.126. SMH
7.127. Solarmer
7.128. Solaronix
7.129. SolarPress
7.130. SolarPrint
7.131. Solid State Research inc
7.132. Sony
7.133. SONY Technology Centre
7.134. Southampton University Hospital
7.135. SPAWAR
7.136. Spectrolab Inc
7.137. Syngenta Sensors UIC
7.138. Technical University of Denmark
7.139. Tellurex
7.140. Texas Micropower
7.141. The Technology Partnership
7.142. Thermolife Energy Corporation
7.143. TiSol
7.144. Tokyo Institute of Technology
7.145. Trophos Energy
7.146. TRW Conekt
7.147. TU ILmenau, Fachgebiet Experimantalphysik I
7.148. Tyndall National Institute
7.149. University of Bristol
7.150. University of California Berkeley
7.151. University of California Los Angeles
7.152. University of Edinburgh
7.153. University of Erlangen

7.154. University of Florida
7.155. University of Freiburg - IMTEK
7.156. University of Idaho
7.157. University of Manchester
7.158. University of Michigan
7.159. University of Pittsburgh
7.160. University of Princeton
7.161. University of Southampton
7.162. University of Surrey (UK)
7.163. University of Tokyo
7.164. Uppsala University
7.165. US Army Research Laboratory
7.166. Virginia Tech
7.167. Voltaic Systems Inc
7.168. Wireless Industrial Technologies
7.169. ZMD AG
8. THE ENOCEAN ALLIANCE
8.1. Promoters
8.1.1. BSC Computer GmbH - Germany
8.1.2. EnOcean -Germany
8.1.3. Leviton - United States
8.1.4. Masco - United States
8.1.5. MK Electric (a Honeywell Business) - United Kingdom
8.1.6. Omnio - Switzerland
8.1.7. OPUS greenNet - Germany
8.1.8. Texas Instruments - United States
8.1.9. Thermokon Sensortechnik - Germany
8.2. Participants

8.2.1. ACTE .PL
8.2.2. Ad Hoc Electronics - United States
8.2.3. Atlas Group
8.2.4. b.a.b technologie GmbH - Germany
8.2.5. Beckhoff - Germany
8.2.6. bk-electronic GmbH
8.2.7. BootUp GmbH - Switzerland
8.2.8. BSC Computer GmbH
8.2.9. Cozir - United Kindom
8.2.10. Denro - Germany
8.2.11. Distech Controls - Canada
8.2.12. DRSG
8.2.13. EchoFlex Solutions
8.2.14. EHRT
8.2.15. Elsner Elektronik - Germany
8.2.16. Eltako GmbH
8.2.17. Emerge Alliance
8.2.18. Ex-Or - United Kindom
8.2.19. Funk Technik - Germany
8.2.20. GE Energy - United States
8.2.21. GFR - Germany
8.2.22. Hansgrohe Group - Germany
8.2.23. Hautau - Germany
8.2.24. HESCH - Germany
8.2.25. Hoppe - Germany
8.2.26. Hotel Technology Next Generation - United States
8.2.27. IK Elektronik GmbH - Germany
8.2.28. ILLUMRA - United States

8.2.29. INSYS Electronics
8.2.30. Intesis Software SL - Spain
8.2.31. IP Controls - Germany
8.2.32. Jager Direkt GmbH & Co
8.2.33. Kieback&Peter GmbH & Co. KG - Germany
8.2.34. LonMark International
8.2.35. Lutuo - China
8.2.36. Magnum Energy Solutions LLC - United States
8.2.37. Murata Europe - Germany
8.2.38. Osram
8.2.39. Osram Silvania
8.2.40. OVERKIZ - Germany
8.2.41. PEHA
8.2.42. PEHA - Germany
8.2.43. PROBARE
8.2.44. Regulvar
8.2.45. Reliable Controls - Canada
8.2.46. S+S Regeltechnik
8.2.47. S4 Group - United States
8.2.48. Sauter
8.2.49. Schulte Elektrotechnik GmbH & Co. KG
8.2.50. SCL Elements Inc - Canada
8.2.51. SensorDynamics AG
8.2.52. Servodan A/S
8.2.53. Shaspa - United Kingdom
8.2.54. Siemens Building Technologies - Switzerland
8.2.55. Siemens Building Technologies GmbH & Co
8.2.56. SmartHome Initiative - Germany

8.2.57. SOMMER - Germany
8.2.58. Spartan Peripheral Devices - Canada
8.2.59. Spega - Germany
8.2.60. steute Schaltgeräte GmbH & Co. KG
8.2.61. Texas Instruments
8.2.62. Titus - United States
8.2.63. Unitronic AG Zentrale - Germany
8.2.64. Unotech A/S - Denmark
8.2.65. USNAP - United States
8.2.66. Vicos - Austria
8.2.67. Viessmann Group - Germany
8.2.68. Vossloh-Schwabe - Germany
8.2.69. WAGO Kontakttechnik GmbH & Co. KG - Germany
8.2.70. Wieland Electric GmbH - Germany
8.2.71. YTL Technologies - China
8.2.72. Zumtobel Lighting GmbH - Austria
8.3. Associates
8.3.1. A. & H. MEYER GmbH - Germany
8.3.2. ABC Shop 24 - Germany
8.3.3. Active Business Company GmbH
8.3.4. Akktor GmbH - Germany
8.3.5. Alvi Technologies
8.3.6. ASP Automação - Brazil
8.3.7. Axis Lighting - Canada
8.3.8. Biberach University of Applied Sciences
8.3.9. bmd AG -Switzerland
8.3.10. BMS Systems
8.3.11. Building Intelligence Group LLC - United States

8.3.12. CAO Group, Inc. - United States
8.3.13. Circuit Holding - Egypt
8.3.14. Com-Pacte - France
8.3.15. Cymbet - United States
8.3.16. Dauphin - Germany
8.3.17. DigiTower Cologne
8.3.18. DimOnOff - Canada
8.3.19. Distech Controls
8.3.20. Dogma Living Technology - Greece
8.3.21. Elektro-Systeme Matthias Friedl - Germany
8.3.22. Elka Hugo Krischke GmbH - Germany
8.3.23. Encelium Technologies - United States
8.3.24. Energie Agentur
8.3.25. enexoma AG - Germany
8.3.26. Engenuity Systems
8.3.27. Engenuity Systems - United States
8.3.28. Engineered Tax Services - United States
8.3.29. EnOcean GmbH
8.3.30. Enolzu - Spain
8.3.31. Enotech - Denmark
8.3.32. ESIC Technology & Sourcing Co., Ltd.
8.3.33. Functional Devices Inc. - United States

8.3.34. Gesteknik
8.3.35. Green Link Alliance
8.3.36. Gruppo Giordano - Italian
8.3.37. Hagemeyer - Germany
8.3.38. HBC Hochschule Biberach - Germany
8.3.39. Herbert Waldmann GmbH & Co. KG - Germany
8.3.40. Hermos - Germany
8.3.41. HK Instruments - Finland
8.3.42. Hochschule Luzern - Technik & Architektur - Switzerland
8.3.43. I.M. tecnics - Spain
8.3.44. Indie Energy - United States
8.3.45. Infinite Power Solutions, Inc. - United States
8.3.46. Ingenieurbüro Knab GmbH - Germany
8.3.47. Ingenieurbüro Zink GmbH
8.3.48. Ingenieurbüro Zink GmbH - Germany
8.3.49. INGLAS Innovative Glassysteme GmbH & Co. KG
8.3.50. Interior Automation - United Kingdom
8.3.51. Ivory Egg - United Kingdom
8.3.52. Kaga Electronics - Japan
8.3.53. KIB Projekt GmbH
8.3.54. Korea Electronics Technology Institute (KETI) - Korea

8.3.55. KVL Comp Ltd.
8.3.56. Ledalite - Canada
8.3.57. LessWire, LLC
8.3.58. Lighting Control & Design - United States
8.3.59. LogiCO2 International SARL. - Luxembourg
8.3.60. Masco
8.3.61. Mitsubishi Materials Corporation - United States
8.3.62. MK Electric (a Honeywell Business)
8.3.63. MONDIAL Electronic GmbH - Austria
8.3.64. Moritani - Japan
8.3.65. Moritani and Co Ltd
8.3.66. MW-Elektroanlagen - Germany
8.3.67. myDATA - Germany
8.3.68. Nibblewave - France
8.3.69. OBERMEYER Planen + Beraten GmbH - Germany
8.3.70. Omnio
8.3.71. Orkit Building Intelligence
8.3.72. Pohlmann Funkbussystems - Germany
8.3.73. PressFinish GmbH - Germany
8.3.74. Prulite Ltd - United States
8.3.75. Pyrecap - France
8.3.76. PYRECAP/HYCOSYS
8.3.77. R+S Group - Germany
8.3.78. SANYO Semiconductor LLC. - United States
8.3.79. SAT Herbert GmbH
8.3.80. SAT System- und Anlagentechnik Herbert GmbH
8.3.81. Seamless Sensing - United Kingdom
8.3.82. Selmoni - Switzerland

8.3.83. Sensocasa - Germany
8.3.84. Seven Line Control Systems - France
8.3.85. SIFRI, S.L. - Spain
8.3.86. SmartLiving Asia - Hong Kong
8.3.87. Spittler Lichttechnik GmbH - Germany
8.3.88. Spoon2 International Limited - United Kingdom
8.3.89. Steinbeis Transferzentrum für Embedded Design und Networking
8.3.90. StyliQ - Germany
8.3.91. STZEDN - Germany
8.3.92. Suffice Group - Hong Kong
8.3.93. Tambient
8.3.94. Tambient - United States
8.3.95. Technograph Microcircuits Ltd
8.3.96. Teleprofi-Verbindet - Germany
8.3.97. Thermokon - Danelko Elektronik AB - Sweden
8.3.98. ThermoKon Sensortechnik
8.3.99. t-mac Technologies Limited - United Kingdom
8.3.100. Tridum - United States
8.3.101. TRILUX GmbH & Co. KG - Germany

8.3.102. Unitronic AG Zentrale
8.3.103. Vicos
8.3.104. Vity Technology - Hong Kong
8.3.105. WAGO Kontakttechnik GmbH & Co. KG
8.3.106. WeberHaus - Germany
8.3.107. Web-IT - Germany
8.3.108. WelComm - United States
8.3.109. Wieland Electric GmbH
8.3.110. WIT - France
8.3.111. WM Ocean - Czech Republic
8.3.112. Yongfu - Singapore
8.3.113. Zurich University of Applied Science (ZHAW) - Switzerland
9. MARKET FORECASTS
9.1. Forecasts for energy harvesting markets
9.1.1. Addressable markets and price sensitivity
9.1.2. IDTechEx energy harvesting forecasts 2014-2024
9.2. Technology sector forecasts for energy harvesting 2014-2024
9.2.1. Timeline for widespread deployment of energy harvesting
9.2.2. Which technologies win?
9.3. Wireless Sensor Networks 2010-2022
9.4. IDTechEx forecast for 2032
9.5. Bicycle dynamo market
APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY
APPENDIX 2: WIRELESS SENSOR NETWORKS
APPENDIX 3: PERMANENT POWER FOR WIRELESS SENSORS - WHITE PAPER FROM CYMBET

To order this report: Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players
http://www.reportlinker.com/p02063307/Energy-Harvesting-and-Storage-for-Electronic-Devices-2014-2024-Forecasts-Technologies-Players .html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Broadband

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Interested in leveling up on your Cloud Foundry skills? Join IBM for Cloud Foundry Days on June 7 at Cloud Expo New York at the Javits Center in New York City. Cloud Foundry Days is a free half day educational conference and networking event. Come find out why Cloud Foundry is the industry's fastest-growing and most adopted cloud application platform.
For financial firms, the cloud is going to increasingly become a crucial part of dealing with customers over the next five years and beyond, particularly with the growing use and acceptance of virtual currencies. There are new data storage paradigms on the horizon that will deliver secure solutions for storing and moving sensitive financial data around the world without touching terrestrial networks. In his session at 20th Cloud Expo, Cliff Beek, President of Cloud Constellation Corporation, w...
While some vendors scramble to create and sell you a fancy solution for monitoring your spanking new Amazon Lambdas, hear how you can do it on the cheap using just built-in Java APIs yourself. By exploiting a little-known fact that Lambdas aren’t exactly single threaded, you can effectively identify hot spots in your serverless code. In his session at 20th Cloud Expo, David Martin, Principal Product Owner at CA Technologies, will give a live demonstration and code walkthrough, showing how to ov...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
SYS-CON Events announced today that Outscale, a global pure play Infrastructure as a Service provider and strategic partner of Dassault Systèmes, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Founded in 2010, Outscale simplifies infrastructure complexities and boosts the business agility of its customers. Outscale delivers a secure, reliable and industrial strength solution for its customers, which in...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory?
SYS-CON Events announced today that Cloudistics, an on-premises cloud computing company, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Cloudistics delivers a complete public cloud experience with composable on-premises infrastructures to medium and large enterprises. Its software-defined technology natively converges network, storage, compute, virtualization, and management into a ...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists will examine how DevOps helps to meet th...
SYS-CON Events announced today that A&I Solutions has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Founded in 1999, A&I Solutions is a leading information technology (IT) software and services provider focusing on best-in-class enterprise solutions. By partnering with industry leaders in technology, A&I assures customers high performance levels across all IT environments including: mai...
Every successful software product evolves from an idea to an enterprise system. Notably, the same way is passed by the product owner's company. In his session at 20th Cloud Expo, Oleg Lola, CEO of MobiDev, will provide a generalized overview of the evolution of a software product, the product owner, the needs that arise at various stages of this process, and the value brought by a software development partner to the product owner as a response to these needs.
SYS-CON Events announced today that EARP will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. "We are a software house, so we perfectly understand challenges that other software houses face in their projects. We can augment a team, that will work with the same standards and processes as our partners' internal teams. Our teams will deliver the same quality within the required time and budget just as our partn...
SYS-CON Events announced today that delaPlex will exhibit at SYS-CON's @ThingsExpo, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. delaPlex pioneered Software Development as a Service (SDaaS), which provides scalable resources to build, test, and deploy software. It’s a fast and more reliable way to develop a new product or expand your in-house team.
SYS-CON Events announced today that Tappest will exhibit MooseFS at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. MooseFS is a breakthrough concept in the storage industry. It allows you to secure stored data with either duplication or erasure coding using any server. The newest – 4.0 version of the software enables users to maintain the redundancy level with even 50% less hard drive space required. The software func...
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software in the hope of capturing value in IoT. Although IoT is relatively new in the market, it has already gone through many promotional terms such as IoE, IoX, SDX, Edge/Fog, Mist Compute, etc. Ultimately, irrespective of the name, it is about deriving value from independent software assets participating in an ecosystem as one comprehensive solution.
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).