Welcome!

News Feed Item

Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players

NEW YORK, April 3, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players
http://www.reportlinker.com/p02063307/Energy-Harvesting-and-Storage-for-Electronic-Devices-2014-2024-Forecasts-Technologies-Players .html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Broadband

Energy harvesting is the process by which ambient energy is captured and converted into electricity for small autonomous devices, such as satellites, laptops and nodes in sensor networks making them self-sufficient. Although energy harvesting applications reach from vehicles to the smart grid, the majority of the value this year is in consumer electronic applications, where energy harvesters have been used for some time.

Energy harvesting, otherwise known as power harvesting or energy scavenging includes photovoltaics, thermovoltaics, piezoelectrics and electrodynamics, among other options, which are now being used in a wide variety of applications. The technology has reached a tipping point, because the necessary lower power electronics and more efficient energy gathering and storage are now sufficiently affordable, reliable and longer lived for a huge number of applications to be practicable.

From wind-up laptops for Africa, wireless light switches working from the power of your finger and wireless sensors in oil fields monitoring equipment power by vibration - these are all in use now with many more applications emerging.

Market segments using Energy Harvesting

This report covers the following market segments with detailed ten year forecasts of each:

- Wristwatches
- Bicycle dynamo
- Laptops, e-books
- Mobile phones
- Other portable consumer electronics - Calculators, toys, piezo gas lighters, electronic car keys, electronic apparel etc
- Wireless sensor mesh networks
- Other Industrial -Mainly buildings, machinery, engines, non-meshed wireless sensors and actuators
- Military and aerospace excluding WSN
- Healthcare - Implants, disposable testers and drug delivery etc
- Other - Research, animals, farming etc

Energy harvesting by technology type

This year, most of the harvesters used in the above market segments are solar cells followed by electrodynamos, two relatively mature energy harvesting technologies. However, many new technologies are now taking some market share enabling power in areas not possible before. This includes thermoelectrics - generating power from heat - where organisations such as the Department of Energy in the US are working with BMW and GM to turn heat waste from engines and exhaust into power for the vehicle's electrical systems. NASA use thermoelectrics to power Mars rovers where they work without light, unlike solar cells. Piezoelectric energy harvesters are also of great interest due to their small form factor and high efficiency. In 2022, these four energy harvester types will have near similar market share for industrial sensing applications. However, even by then solar will continue to dominate for consumer applications.

For the first time, this unique report looks at the global situation. It covers the progress of more than 350 organizations in 22 countries and gives detailed case studies. Market forecasts are provided for everything from self-sufficient wristwatches to mobile phones that will never need a charger and light switches and controls that have no wiring and no batteries when fitted in buildings to wireless sensors power from the environment they are placed in.

However, there are further mountains to climb in order to achieve self-powered wireless sensors monitoring forest fires, pollution spillages and even inside the human body and in the concrete of buildings. These applications will become commonplace one day. Even devices with maintenance-free life of hundreds of years can now be envisaged. Meanwhile, bionic man containing maintenance free, self-powered devices for his lifetime is an objective for the next few years. IDTechEx find that the total market for energy harvesting devices, including everything from wristwatches to wireless sensors will rise to over $2.6 billion in 2024.

How do these things work? Which technologies have the most potential now and in the future? What are the advantages and disadvantages of each? Which countries have the most active programs and why? What are the leading universities, developers, manufacturers and other players up to? What alliances exist? What are the timelines for success? All these questions and more are answered in this report.
1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Market forecast 2014-2024
1.2. Technology sector forecasts for Energy Harvesting 2014-2024
1.3. Regenerative braking
2. INTRODUCTION
2.1. What is energy harvesting?
2.2. What it is not
2.3. Energy harvesting compared with alternatives

2.4. Power requirements of different devices
3. ENERGY HARVESTING TECHNOLOGIES AND THEIR APPLICATIONS
3.1. Thermoelectric energy harvesting
3.1.1. Technology and scientific principles
3.1.2. Designing for thermoelectric applications
3.1.3. Thin Film Thermoelectric Generators
3.1.4. Material choices
3.2. Applications
3.2.1. Automotive Applications
3.3. Wireless Sensing
3.3.1. TE-CORE
3.3.2. WiTemp
3.4. Other industrial applications
3.5. Aerospace
3.6. Wearable thermoelectrics
3.7. Consumer applications
3.7.2. PowerPot™
4. PIEZOELECTRIC ENERGY HARVESTING
4.1. Technology and scientific principles
4.1.1. What is piezoelectric energy harvesting?
4.1.2. How piezoelectricity works

4.1.3. How piezoelectric materials are made
4.1.4. PZT - leading piezoelectric material used today
4.1.5. Single Crystal Piezo
4.1.6. Piezo Fibre Composites PFCs and IDEPFC
4.2. Piezoelectrics as an energy harvester
4.3. Vibration harvesting
4.3.1. Wideband
4.3.2. Damping
4.3.3. Remote controllers
4.4. Movement harvesting options
4.5. Applications
4.5.1. Consumer Electronics
4.5.2. Energy harvesting for Vehicles
4.5.3. Application Case Study: Piezo Power Source for tyre pressure monitoring
4.5.4. Healthcare
4.5.5. Powering Wireless Sensors
4.5.6. Switching and Lighting: Piezoelectric Energy harvesting
5. SOLAR ENERGY HARVESTING
5.1. Technologies and scientific principles
5.1.1. Organic PV
5.2. Efficiency

5.2.1. Ways to improve the efficiency
5.3. DSSC (dye sensitized solar cells)
5.3.2. Solid State DSSCs
5.3.3. Applications
6. ELECTRODYNAMIC ENERGY HARVESTING
6.1. Technology and scientific principles
6.1.1. Applications
7. PROFILES OF PARTICIPANTS IN 22 COUNTRIES
7.1. 3G Solar
7.2. Advanced Cerametrics
7.3. Agency for Defense Development
7.4. AIST Tsukuba
7.5. Algra
7.6. Ambient Research
7.7. AmbioSystems LLC
7.8. Amerigon-BSST
7.9. Applied Digital Solutions
7.10. Arveni
7.11. Australian National University - Department of Engineering
7.12. Boeing

7.13. California Institute of Technology/Jet Propulsion Laboratory
7.14. Cambrian Innovation (formerly IntAct)
7.15. Canova Tech
7.16. Carnegie Mellon University
7.17. Chinese University of Hong Kong
7.18. CSIRO
7.19. Cymtox Ltd
7.20. DisaSolar
7.21. Drexel University
7.22. Dyesol
7.23. East Japan Railway Company
7.24. EDF R&D
7.25. Eight19
7.26. Electronics and Telecommunications Research Institute (ETRI)

7.27. Ember Corporation
7.28. Encrea srl
7.29. European Space Agency
7.30. EVERREDtronics
7.31. Fast Trak Ltd
7.32. Ferro Solutions, Inc.
7.33. Ferrotec
7.34. Fraunhofer IKTS
7.35. Fraunhofer Institut Integrierte Schaltungen
7.36. Freeplay Foundation
7.37. Fujikura
7.38. G24i Power
7.39. Ganssle Group
7.40. Gas Sensing Solution Ltd
7.41. General Electric Company
7.42. Georgia Institute of Technology
7.43. Global Thermoelectric
7.44. GreenPeak Technologies
7.45. greenTEG
7.46. Harvard University
7.47. Heliatek GmbH

7.48. Henkel
7.49. Hi-Tech Wealth
7.50. Holst Centre
7.51. Honeywell
7.52. Idaho National Laboratory
7.53. IMEC
7.54. Imperial College
7.55. Imperial College London
7.56. India Space Research Organisation
7.57. Intel
7.58. ITRI (Industrial Technology Research Institute)
7.59. ITT
7.60. Japan Aerospace Exploration Agency
7.61. JX Nippon Oil and Gas

7.62. Kanazawa University
7.63. KCF Technologies Inc
7.64. Kinergi Pty Ltd
7.65. Kinetron BV
7.66. Konarka
7.67. Kookmin University,
7.68. Korea Electronics Company
7.69. Korea Institute of Science and Technology and Korea Research Institute of Chemical Technology
7.70. Laird / Nextreme
7.71. Lawrence Livermore National Laboratory
7.72. Lear Corporation
7.73. Lebônê Solutions
7.74. Lockheed Martin Corporation
7.75. LV Sensors, Inc.
7.76. Marlow
7.77. Massachusetts Institute of Technology
7.78. mc10
7.79. Meggitt Sensing Systems
7.80. Michigan Technological University

7.81. Microdul AG
7.82. Microgen
7.83. Micropelt GmbH
7.84. Microsemi
7.85. MicroStrain Inc.
7.86. Midé Technology Corporation
7.87. Mitsubishi Corporation
7.88. Nanosonic Inc
7.89. NASA
7.90. National Institute of Advanced Industrial Science & Technology (AIST)
7.91. National Renewable Energy Lab (USA)
7.92. National Semiconductor
7.93. Nextreme
7.94. Nissha Printing
7.95. NNL - Universita del Salento
7.96. Nokia Cambridge UK Research Centre
7.97. North Carolina State University
7.98. Northeastern University
7.99. Northwestern University
7.100. Nova Mems
7.101. NTT DOCOMO
7.102. Oak Ridge National Laboratory
7.103. Ohio State University

7.104. Omron Corporation
7.105. Oxford Photovoltaics
7.106. Pavegen
7.107. Perpetua
7.108. Perpetuum Ltd
7.109. Plextronics
7.110. Polatis Photonics
7.111. PowerFilm, Inc.
7.112. POWERLeap
7.113. PulseSwitch Systems
7.114. Rockwell Scientific
7.115. Romny Scientific
7.116. Rosemount, Inc.
7.117. Samsung SDI
7.118. Sandia National Laboratory
7.119. Scuola Superiore Sant'Anna
7.120. Seiko
7.121. Shanghai Jiao Tong University
7.122. SHARP
7.123. Siemens Power Generation
7.124. Simon Fraser University

7.125. Smart Material Corp.
7.126. SMH
7.127. Solarmer
7.128. Solaronix
7.129. SolarPress
7.130. SolarPrint
7.131. Solid State Research inc
7.132. Sony
7.133. SONY Technology Centre
7.134. Southampton University Hospital
7.135. SPAWAR
7.136. Spectrolab Inc
7.137. Syngenta Sensors UIC
7.138. Technical University of Denmark
7.139. Tellurex
7.140. Texas Micropower
7.141. The Technology Partnership
7.142. Thermolife Energy Corporation
7.143. TiSol
7.144. Tokyo Institute of Technology
7.145. Trophos Energy
7.146. TRW Conekt
7.147. TU ILmenau, Fachgebiet Experimantalphysik I
7.148. Tyndall National Institute
7.149. University of Bristol
7.150. University of California Berkeley
7.151. University of California Los Angeles
7.152. University of Edinburgh
7.153. University of Erlangen

7.154. University of Florida
7.155. University of Freiburg - IMTEK
7.156. University of Idaho
7.157. University of Manchester
7.158. University of Michigan
7.159. University of Pittsburgh
7.160. University of Princeton
7.161. University of Southampton
7.162. University of Surrey (UK)
7.163. University of Tokyo
7.164. Uppsala University
7.165. US Army Research Laboratory
7.166. Virginia Tech
7.167. Voltaic Systems Inc
7.168. Wireless Industrial Technologies
7.169. ZMD AG
8. THE ENOCEAN ALLIANCE
8.1. Promoters
8.1.1. BSC Computer GmbH - Germany
8.1.2. EnOcean -Germany
8.1.3. Leviton - United States
8.1.4. Masco - United States
8.1.5. MK Electric (a Honeywell Business) - United Kingdom
8.1.6. Omnio - Switzerland
8.1.7. OPUS greenNet - Germany
8.1.8. Texas Instruments - United States
8.1.9. Thermokon Sensortechnik - Germany
8.2. Participants

8.2.1. ACTE .PL
8.2.2. Ad Hoc Electronics - United States
8.2.3. Atlas Group
8.2.4. b.a.b technologie GmbH - Germany
8.2.5. Beckhoff - Germany
8.2.6. bk-electronic GmbH
8.2.7. BootUp GmbH - Switzerland
8.2.8. BSC Computer GmbH
8.2.9. Cozir - United Kindom
8.2.10. Denro - Germany
8.2.11. Distech Controls - Canada
8.2.12. DRSG
8.2.13. EchoFlex Solutions
8.2.14. EHRT
8.2.15. Elsner Elektronik - Germany
8.2.16. Eltako GmbH
8.2.17. Emerge Alliance
8.2.18. Ex-Or - United Kindom
8.2.19. Funk Technik - Germany
8.2.20. GE Energy - United States
8.2.21. GFR - Germany
8.2.22. Hansgrohe Group - Germany
8.2.23. Hautau - Germany
8.2.24. HESCH - Germany
8.2.25. Hoppe - Germany
8.2.26. Hotel Technology Next Generation - United States
8.2.27. IK Elektronik GmbH - Germany
8.2.28. ILLUMRA - United States

8.2.29. INSYS Electronics
8.2.30. Intesis Software SL - Spain
8.2.31. IP Controls - Germany
8.2.32. Jager Direkt GmbH & Co
8.2.33. Kieback&Peter GmbH & Co. KG - Germany
8.2.34. LonMark International
8.2.35. Lutuo - China
8.2.36. Magnum Energy Solutions LLC - United States
8.2.37. Murata Europe - Germany
8.2.38. Osram
8.2.39. Osram Silvania
8.2.40. OVERKIZ - Germany
8.2.41. PEHA
8.2.42. PEHA - Germany
8.2.43. PROBARE
8.2.44. Regulvar
8.2.45. Reliable Controls - Canada
8.2.46. S+S Regeltechnik
8.2.47. S4 Group - United States
8.2.48. Sauter
8.2.49. Schulte Elektrotechnik GmbH & Co. KG
8.2.50. SCL Elements Inc - Canada
8.2.51. SensorDynamics AG
8.2.52. Servodan A/S
8.2.53. Shaspa - United Kingdom
8.2.54. Siemens Building Technologies - Switzerland
8.2.55. Siemens Building Technologies GmbH & Co
8.2.56. SmartHome Initiative - Germany

8.2.57. SOMMER - Germany
8.2.58. Spartan Peripheral Devices - Canada
8.2.59. Spega - Germany
8.2.60. steute Schaltgeräte GmbH & Co. KG
8.2.61. Texas Instruments
8.2.62. Titus - United States
8.2.63. Unitronic AG Zentrale - Germany
8.2.64. Unotech A/S - Denmark
8.2.65. USNAP - United States
8.2.66. Vicos - Austria
8.2.67. Viessmann Group - Germany
8.2.68. Vossloh-Schwabe - Germany
8.2.69. WAGO Kontakttechnik GmbH & Co. KG - Germany
8.2.70. Wieland Electric GmbH - Germany
8.2.71. YTL Technologies - China
8.2.72. Zumtobel Lighting GmbH - Austria
8.3. Associates
8.3.1. A. & H. MEYER GmbH - Germany
8.3.2. ABC Shop 24 - Germany
8.3.3. Active Business Company GmbH
8.3.4. Akktor GmbH - Germany
8.3.5. Alvi Technologies
8.3.6. ASP Automação - Brazil
8.3.7. Axis Lighting - Canada
8.3.8. Biberach University of Applied Sciences
8.3.9. bmd AG -Switzerland
8.3.10. BMS Systems
8.3.11. Building Intelligence Group LLC - United States

8.3.12. CAO Group, Inc. - United States
8.3.13. Circuit Holding - Egypt
8.3.14. Com-Pacte - France
8.3.15. Cymbet - United States
8.3.16. Dauphin - Germany
8.3.17. DigiTower Cologne
8.3.18. DimOnOff - Canada
8.3.19. Distech Controls
8.3.20. Dogma Living Technology - Greece
8.3.21. Elektro-Systeme Matthias Friedl - Germany
8.3.22. Elka Hugo Krischke GmbH - Germany
8.3.23. Encelium Technologies - United States
8.3.24. Energie Agentur
8.3.25. enexoma AG - Germany
8.3.26. Engenuity Systems
8.3.27. Engenuity Systems - United States
8.3.28. Engineered Tax Services - United States
8.3.29. EnOcean GmbH
8.3.30. Enolzu - Spain
8.3.31. Enotech - Denmark
8.3.32. ESIC Technology & Sourcing Co., Ltd.
8.3.33. Functional Devices Inc. - United States

8.3.34. Gesteknik
8.3.35. Green Link Alliance
8.3.36. Gruppo Giordano - Italian
8.3.37. Hagemeyer - Germany
8.3.38. HBC Hochschule Biberach - Germany
8.3.39. Herbert Waldmann GmbH & Co. KG - Germany
8.3.40. Hermos - Germany
8.3.41. HK Instruments - Finland
8.3.42. Hochschule Luzern - Technik & Architektur - Switzerland
8.3.43. I.M. tecnics - Spain
8.3.44. Indie Energy - United States
8.3.45. Infinite Power Solutions, Inc. - United States
8.3.46. Ingenieurbüro Knab GmbH - Germany
8.3.47. Ingenieurbüro Zink GmbH
8.3.48. Ingenieurbüro Zink GmbH - Germany
8.3.49. INGLAS Innovative Glassysteme GmbH & Co. KG
8.3.50. Interior Automation - United Kingdom
8.3.51. Ivory Egg - United Kingdom
8.3.52. Kaga Electronics - Japan
8.3.53. KIB Projekt GmbH
8.3.54. Korea Electronics Technology Institute (KETI) - Korea

8.3.55. KVL Comp Ltd.
8.3.56. Ledalite - Canada
8.3.57. LessWire, LLC
8.3.58. Lighting Control & Design - United States
8.3.59. LogiCO2 International SARL. - Luxembourg
8.3.60. Masco
8.3.61. Mitsubishi Materials Corporation - United States
8.3.62. MK Electric (a Honeywell Business)
8.3.63. MONDIAL Electronic GmbH - Austria
8.3.64. Moritani - Japan
8.3.65. Moritani and Co Ltd
8.3.66. MW-Elektroanlagen - Germany
8.3.67. myDATA - Germany
8.3.68. Nibblewave - France
8.3.69. OBERMEYER Planen + Beraten GmbH - Germany
8.3.70. Omnio
8.3.71. Orkit Building Intelligence
8.3.72. Pohlmann Funkbussystems - Germany
8.3.73. PressFinish GmbH - Germany
8.3.74. Prulite Ltd - United States
8.3.75. Pyrecap - France
8.3.76. PYRECAP/HYCOSYS
8.3.77. R+S Group - Germany
8.3.78. SANYO Semiconductor LLC. - United States
8.3.79. SAT Herbert GmbH
8.3.80. SAT System- und Anlagentechnik Herbert GmbH
8.3.81. Seamless Sensing - United Kingdom
8.3.82. Selmoni - Switzerland

8.3.83. Sensocasa - Germany
8.3.84. Seven Line Control Systems - France
8.3.85. SIFRI, S.L. - Spain
8.3.86. SmartLiving Asia - Hong Kong
8.3.87. Spittler Lichttechnik GmbH - Germany
8.3.88. Spoon2 International Limited - United Kingdom
8.3.89. Steinbeis Transferzentrum für Embedded Design und Networking
8.3.90. StyliQ - Germany
8.3.91. STZEDN - Germany
8.3.92. Suffice Group - Hong Kong
8.3.93. Tambient
8.3.94. Tambient - United States
8.3.95. Technograph Microcircuits Ltd
8.3.96. Teleprofi-Verbindet - Germany
8.3.97. Thermokon - Danelko Elektronik AB - Sweden
8.3.98. ThermoKon Sensortechnik
8.3.99. t-mac Technologies Limited - United Kingdom
8.3.100. Tridum - United States
8.3.101. TRILUX GmbH & Co. KG - Germany

8.3.102. Unitronic AG Zentrale
8.3.103. Vicos
8.3.104. Vity Technology - Hong Kong
8.3.105. WAGO Kontakttechnik GmbH & Co. KG
8.3.106. WeberHaus - Germany
8.3.107. Web-IT - Germany
8.3.108. WelComm - United States
8.3.109. Wieland Electric GmbH
8.3.110. WIT - France
8.3.111. WM Ocean - Czech Republic
8.3.112. Yongfu - Singapore
8.3.113. Zurich University of Applied Science (ZHAW) - Switzerland
9. MARKET FORECASTS
9.1. Forecasts for energy harvesting markets
9.1.1. Addressable markets and price sensitivity
9.1.2. IDTechEx energy harvesting forecasts 2014-2024
9.2. Technology sector forecasts for energy harvesting 2014-2024
9.2.1. Timeline for widespread deployment of energy harvesting
9.2.2. Which technologies win?
9.3. Wireless Sensor Networks 2010-2022
9.4. IDTechEx forecast for 2032
9.5. Bicycle dynamo market
APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY
APPENDIX 2: WIRELESS SENSOR NETWORKS
APPENDIX 3: PERMANENT POWER FOR WIRELESS SENSORS - WHITE PAPER FROM CYMBET

To order this report: Energy Harvesting and Storage for Electronic Devices 2014-2024: Forecasts, Technologies, Players
http://www.reportlinker.com/p02063307/Energy-Harvesting-and-Storage-for-Electronic-Devices-2014-2024-Forecasts-Technologies-Players .html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Broadband

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Struggling to keep up with increasing application demand? Learn how Platform as a Service (PaaS) can streamline application development processes and make resource management easy.
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, will show how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningfu...
If there is anything we have learned by now, is that every business paves their own unique path for releasing software- every pipeline, implementation and practices are a bit different, and DevOps comes in all shapes and sizes. Software delivery practices are often comprised of set of several complementing (or even competing) methodologies – such as leveraging Agile, DevOps and even a mix of ITIL, to create the combination that’s most suitable for your organization and that maximize your busines...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists will dis...
Up until last year, enterprises that were looking into cloud services usually undertook a long-term pilot with one of the large cloud providers, running test and dev workloads in the cloud. With cloud’s transition to mainstream adoption in 2015, and with enterprises migrating more and more workloads into the cloud and in between public and private environments, the single-provider approach must be revisited. In his session at 18th Cloud Expo, Yoav Mor, multi-cloud solution evangelist at Cloudy...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
See storage differently! Storage performance problems have only gotten worse and harder to solve as applications have become largely virtualized and moved to a cloud-based infrastructure. Storage performance in a virtualized environment is not just about IOPS, it is about how well that potential performance is guaranteed to individual VMs for these apps as the number of VMs keep going up real time. In his session at 18th Cloud Expo, Dhiraj Sehgal, in product and marketing at Tintri, will discu...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...