Click here to close now.


News Feed Item

Four Paraplegic Men Voluntarily Move Their Legs, an "Unprecedented Breakthrough" for Paralysis Community

New Research Documents the Effectiveness of Epidural Stimulation as a Therapy Option for Paralysis; Results Published Today in Brain

LOUISVILLE, Ky., April 8, 2014 /PRNewswire-USNewswire/ -- Four young men who have been paralyzed for years achieved groundbreaking progress – moving their legs – as a result of epidural electrical stimulation of the spinal cord, an international team of life scientists at the University of Louisville, UCLA and the Pavlov Institute of Physiology reported today in the medical journal Brain. The study was funded in part by the Christopher & Dana Reeve Foundation and the National Institutes of Health.

Christopher & Dana Reeve Foundation.

All four participants were classified with a chronic motor complete spinal cord injury and were unable to move their lower extremities prior to the implantation of an epidural stimulator. This research builds on an initial study, published in the May 2011 edition of The Lancet, which evaluated the effects of epidural stimulation in the first participant, Rob Summers, who recovered a number of motor functions as a result of the intervention.

Now three years later, the key findings documented in Brain detail the impact of epidural stimulation in four participants, including new tests conducted on Summers. What is truly revolutionary is that the second, third and fourth participants were able to execute voluntary movements immediately following the implantation and activation of the stimulator. The results and recovery time were unexpected, leading researchers to speculate that some pathways may be intact post-injury and therefore able to facilitate voluntary movements.

"Two of the four subjects were diagnosed as motor and sensory complete injured with no chance of recovery at all," Claudia Angeli, Ph.D., senior researcher, Human Locomotor Research Center at Frazier Rehab Institute, and assistant professor, University of Louisville's Kentucky Spinal Cord Injury Research Center (KSCIRC) and lead author. "Because of epidural stimulation, they can now voluntarily move their hips, ankles and toes. This is groundbreaking for the entire field and offers a new outlook that the spinal cord, even after a severe injury, has great potential for functional recovery."

These results were achieved through continual direct epidural electrical stimulation of the participants' lower spinal cords, mimicking signals the brain normally transmits to initiate movement. Once the signal was triggered, the spinal cord reengaged its neural network to control and direct muscle movements. When coupling the intervention with rehabilitative therapy, the impact of epidural stimulation intensified. Over the course of the study, the researchers noted that the participants were able to activate movements with less stimulation, demonstrating the ability of the spinal network to learn and improve nerve functions.

"We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis even years after injury," said Susan Harkema, Ph.D., University of Louisville professor and rehabilitation research director at KSCIRC, Frazier Rehab Institute, director of the Reeve Foundation's NeuroRecovery Network and primary author of The Lancet article. "The belief that no recovery is possible and complete paralysis is permanent has been challenged."

Beyond regaining voluntary movement, the research participants have displayed a myriad of improvements in their overall health, including the increase of muscle mass and regulation of their blood pressure, as well as reduced fatigue and transformational changes to their sense of well-being. Additionally, all four men were able to bear weight independently, as reported by the team, which also includes Yury Gerasimenko, Ph.D., professor and director of the laboratory of movement physiology at St. Petersburg's Pavlov Institute and a researcher in UCLA's Department of Integrative Biology and Physiology.

"This research brings up an amazing number of possibilities for how we can develop interventions that will help people recover movement they have lost," said V. Reggie Edgerton, Ph.D., UCLA distinguished professor of integrative biology, physiology, neurobiology and neurosurgery. "The circuitry in the spinal cord is remarkably resilient. Once you get them up and active, many physiological systems that are intricately connected and were dormant come back into play."

Providing Hope for People Living with Paralysis
With nearly six million Americans living with paralysis, including 1.275 million spinal cord injuries, this study confirms a significant breakthrough in terms of developing clinical therapies to advance the treatment of paralysis. The participants ranged in neurological level from C7-T5 and were at least two years post–injury at the time of the intervention. The initial research hypothesis stated that the two participants with the American Spinal Injury Association Impairment Scale (AIS) classification of AIS A would not elicit any voluntary movement, despite the therapy intervention, and the two participants who were AIS B would develop voluntary movement following a combination of training and epidural stimulation. However, in the presence of epidural stimulation, all four recovered voluntary control of their lower extremities, surprising researchers who believed at least some of the sensory pathway must be intact for epidural stimulation to be successful.

As the first epidural stimulation participant, Rob Summers moved the needle for the entire field with his unprecedented recovery. With a C6 injury, he was paralyzed below the chest after being struck by a vehicle in 2006. Summers currently resides in Portland, Oregon. The other three research participants include:

  • Kent Stephenson was the second person to undergo epidural stimulation after sustaining an injury at T5-T6 during a motocross accident in 2009. He resides in Mount Pleasant, Texas.
  • Andrew Meas was in a motorcycle accident in 2007, resulting in an injury at C6-C7. Meas was the third person implanted and lives in Louisville, Kentucky.
  • Dustin Shillcox injured his spine at T5 in a devastating auto accident in 2010. He was the fourth participant and resides in Green River, Wyoming.

"With this study the investigators show that their findings about a motor complete patient regaining movement, as published three years ago in The Lancet, were not an anomaly," said Susan Howley, executive vice president for research at the Christopher & Dana Reeve Foundation.  "At the present time, other than standard medical care, there are no effective evidence-based treatments for chronic spinal cord injury. However, the implications of this study for the entire field are quite profound and we can now envision a day where epidural stimulation might be part of a cocktail of therapies used to treat paralysis."

Investing in Epidural Stimulation
The research was funded by the Christopher & Dana Reeve Foundation, the National Institutes of Health (RO1EB007615, P30 GM103507), the Leona M. and Harry B. Helmsley Charitable Trust, the Kessler Foundation, the University of Louisville Foundation, Jewish Hospital and St. Mary's Foundation, Frazier Rehab Institute and University of Louisville Hospital.

"When we first learned that a patient had regained voluntary control as a result of the therapy, we were cautiously optimistic," said Roderic Pettigrew, M.D., Ph.D., director of the National Institute of Biomedical Imaging and Bioengineering, which provided support for the study. "Now that spinal stimulation has been successful in four out of four patients, there is evidence to suggest a large cohort of individuals, previously with little realistic hope of any meaningful recovery from spinal cord injury, may benefit from this intervention."

Epidural stimulation, in the context of paralysis of the lower extremities, is the application of continuous electrical current, at varying frequencies and intensities to specific locations on the lumbosacral spinal cord, corresponding to the dense neural bundles that largely control movement of the hips, knees, ankles and toes.

"This is a wake-up call for how we see motor complete spinal cord injury," said Edgerton, who has been conducting fundamental research in this area for 38 years and is a member of the Reeve Foundation's International Research Consortium on Spinal Cord Injury. "We don't have to necessarily rely on regrowth of nerves in order to regain function. The fact that we've observed this in four out of four people suggests that this is actually a common phenomenon in those diagnosed with complete paralysis."

Dr. Angeli and her colleagues are optimistic that the therapy intervention will continue to result in improved motor functions. In fact, based on observations from the research, there is strong evidence that with continued advancements of the epidural stimulator, individuals with a complete spinal cord injury will be able to bear weight independently, maintain balance and work towards stepping.

For more information about epidural stimulation and other spinal cord injury research, please visit and

For research information, patient bios and multimedia, please visit

Bibliographic details:
'Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans' by Claudia Angeli, Victor R. Edgerton, Yury Gerasimenko, and Susan Harkema.

Brain: A Journal of Neuroscience, doi: 10.1093/brain/awu038

About the Reeve Foundation
The Christopher & Dana Reeve Foundation is dedicated to curing spinal cord injury by funding innovative research and improving the quality of life for people living with paralysis through grants, information and advocacy. We meet all 20 of the Better Business Bureau's standards for charity accountability and hold the BBB's Charity Seal.  For more information, please visit our website at or call 800-225-0292.

About the University of Louisville
The University of Louisville is Kentucky's metropolitan research university, with 22,000 students attending classes at 11 colleges and schools on three campuses. Bordered by its many medical partners, UofL's downtown Health Sciences Center is home to more than 3,000 students pursuing degrees in health-related fields with the Schools of Dentistry, Medicine, Nursing and Public Health and Information Sciences, as well as 14 interdisciplinary centers and institutes.

About UCLA
UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Seven alumni and six faculty have been awarded the Nobel Prize. For more news, visit the UCLA Newsroom and follow us on Twitter.

About the National Institute of Biomedical Imaging and Bioengineering
The National Institute of Biomedical Imaging and Bioengineering (NIBIB) is part of the National Institutes of Health, the nation's medical research agency and a component of the US Department of Health and Human Services. NIBIB's mission is to improve health by leading the development and accelerating the application of biomedical technologies. The Institute is committed to integrating the physical and engineering sciences with the life sciences to advance basic research and medical care. NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training. More information is available at the NIBIB website:

About Brain: A Journal of Neuroscience
Brain provides researchers and clinicians with the finest original contributions in neurology. Leading studies in neurological science are balanced with practical clinical articles. Its citation rating is one of the highest for neurology journals, and it consistently publishes papers that become classics in the field. Brain is published by Oxford University Press.

Logo -

SOURCE Christopher & Dana Reeve Foundation

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively.
Docker is hot. However, as Docker container use spreads into more mature production pipelines, there can be issues about control of Docker images to ensure they are production-ready. Is a promotion-based model appropriate to control and track the flow of Docker images from development to production? In his session at DevOps Summit, Fred Simon, Co-founder and Chief Architect of JFrog, will demonstrate how to implement a promotion model for Docker images using a binary repository, and then show h...
The enterprise is being consumerized, and the consumer is being enterprised. Moore's Law does not matter anymore, the future belongs to business virtualization powered by invisible service architecture, powered by hyperscale and hyperconvergence, and facilitated by vertical streaming and horizontal scaling and consolidation. Both buyers and sellers want instant results, and from paperwork to paperless to mindless is the ultimate goal for any seamless transaction. The sweetest sweet spot in innov...
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, al...
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and containers together help companies achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, will review the current landscape of...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll sha...
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driv...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
DevOps has often been described in terms of CAMS: Culture, Automation, Measuring, Sharing. While we’ve seen a lot of focus on the “A” and even on the “M”, there are very few examples of why the “C" is equally important in the DevOps equation. In her session at @DevOps Summit, Lori MacVittie, of F5 Networks, will explore HTTP/1 and HTTP/2 along with Microservices to illustrate why a collaborative culture between Dev, Ops, and the Network is critical to ensuring success.
There are many considerations when moving applications from on-premise to cloud. It is critical to understand the benefits and also challenges of this migration. A successful migration will result in lower Total Cost of Ownership, yet offer the same or higher level of robustness. Migration to cloud shifts computing resources from your data center, which can yield significant advantages provided that the cloud vendor an offer enterprise-grade quality for your application.
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction....
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership ability. Many are unable to effectively engage and inspire, creating forward momentum in the direction of desired change. Renowned for its approach to leadership and emphasis on their people, organizations increasingly look to our military for insight into these challenges.