Welcome!

Related Topics: @BigDataExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, @CloudExpo

@BigDataExpo: Blog Post

In-Memory Computing By @GridGain | @CloudExpo [#BigData]

The best way to clear the air around IMC is to start with a simple explanation of what, in fact, in-memory computing is

The Facts and Fiction of In-Memory Computing

In the last year, conversations about In-Memory Computing (IMC) have become more and more prevalent in enterprise IT circles, especially with organizations feeling the pressure to process massive quantities of data at the speed that is now being demanded by the Internet. The hype around IMC is justified: tasks that once took hours to execute are streamlined down to seconds by moving the computation and data from disk, directly to RAM. Through this simple adjustment, analytics are happening in real-time, and applications (as well as the development of applications) are working at-pace with this new standard of technology and speed.

Despite becoming both more cost-effective and accepted within enterprise computing, there are still a small handful of falsehoods that confuse even the most technical of individuals in enterprise IT.

Myth: In-memory computing is about databases, so this isn't really relevant to my business.

The best way to clear the air around IMC is to start with a simple explanation of what, in fact, in-memory computing is. While many assume that because we are talking about RAM, we are having a conversation about databases and storage, but this is not the case.

IMC, at its most basic level, is using a middleware software that allows one to store data in RAM - across a broad cluster of computers - and do any and all processing where it resides (in the memory). With traditional methods, data processing is often confined to spinning disks.

By comparison, in-memory computing speeds up this process by roughly 5,000 times. Now you can see that we're not talking about storage only - instead active, fluid data and computing.

Which brings me to another, more tangible point about computing efficiency. By incorporating in-memory, a handful of processes are streamlined in order to save time, resources, and money.

To start, in-memory requires much less hardware; the result - significantly decreased capital, operational and infrastructure overhead.

Moreover, IT departments can also significantly extend the life of existing hardware and software through the increased performance that is inherent with IMC - thus amplifying the ROI on the machines that have already been purchased.

Surprisingly, in-memory computing is not a new phenomenon. Since the inception of RAM, IMC has been viewed as reliable accelerant for high-performance computing, bringing us to the next crucial misconception about this technology.

Myth: In-memory computing is expensive, therefore not practical for my operation.

There is a reason that this is one of the most common misunderstandings about IMC, because there was a point in time where the cost of memory was once quite high. That being said, the cost of RAM has been dropping consistently, at a rate of about 30% - for the last 5 years.

Today, the price of a 1 Terabyte RAM cluster can go for anywhere between $20 and $40 thousand - including all of the CPUs, networking, etc. A few years from now that same setup will likely be available for half that price.

Regardless of the future price of RAM, which based upon current projections will likely continue to fall, the current economics have already placed this technology well within the reaches of the enterprise computing budgets that require this level of scale.

Myth: My needs are already being met by Flash.

There are three different reasons why this mentality is held by IT folks, each of which are highly misinformed. I'll start with the most common, which is the idea that your business doesn't need the Lambourgini-esque super-computing power of IMC.

The hard yet obvious reality is that if your business is in any way data-driven, you likely cannot survive without speed and agility in this department. As time goes on, the amount of data that businesses accumulate compounds with new streams and variances. This is a sink-or-swim reality.

Another myth commonly used to dispel IMC is that if businesses are able to just effectively mount RAM disk, they will get in-memory processing. Unfortunately, it's not that easy. As mentioned earlier, IMC works through middleware to effectively unlock its power.

Finally, there's the notion that one can just replace their HDDs with SSDs in order to get this super-charged performance. For SSDs - in certain situations - the performance gain that you can pull from flash storage in lieu of spinning disk is enough.

However, speed matters - and is rapidly becoming more of a requirement every day. At this point, it's like comparing apples to oranges with speed improvements of 10 to 100x over SSDs.

Myth: Memory is not durable enough to be truly sustainable.

This is another notion that for whatever reason has been both widely perpetuated - and is entirely false.

The fact is - almost all in-memory computing middleware (apart from very simplistic ones) offer one or multiple strategies for in-memory backups, durable storage backups, disk-based swap space overflow, etc.

More sophisticated vendors provide a comprehensive tiered storage approach where users can decide what portion of the overall data set is stored in RAM, local disk swap space or RDBMS/HDFS - where each tier can store progressively more data but with progressively longer latencies.

Yet another source of confusion is the difference between operational datasets and historical datasets. In-memory computing is not aimed at replacing enterprise data warehouse (EDW), backup or offline storage services - like Hadoop, for example. The goal of IMC is to improve the operational datasets that require mixed OLTP and OLAP processing and in most cases are less than 10TB in size. That is to say, in-memory computing is not "all or nothing" - and does not require that every aspect of data be housed in memory.

The in-memory computing revolution is by no means intended to obliterate disks from the enterprise. For now, the disk still serves a well-defined role for offline/backup use cases - tasks that are not the focus of IMC.

Myth: In-memory is inaccessible to my business because so few developers actually know how to use it.

Yes indeed, In-memory computing is a highly complex technology, that for now, only a few vendors have even been able to successfully develop offerings for. However, like much of high-technology, in-memory computing has entered the world of open source - bringing its capabilities and power to the fingertips of developers around the world.

Currently, with GridGain, developers have the ability to get their hands on IMC with a simple download at http://gridgain.org/.

In-memory computing is already being tapped across a broad range of functions and industries including (but not limited to) financial trading systems, online game, bioinformatics, hyper-local advertising, cognitive computing, and geospatial analysis.

By raising awareness, and bringing the capabilities of IMC to more developers and organizations - industries around the globe are poised to experience entirely new standards of speed, computing, and performance.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
Kubernetes is a new and revolutionary open-sourced system for managing containers across multiple hosts in a cluster. Ansible is a simple IT automation tool for just about any requirement for reproducible environments. In his session at @DevOpsSummit at 18th Cloud Expo, Patrick Galbraith, a principal engineer at HPE, discussed how to build a fully functional Kubernetes cluster on a number of virtual machines or bare-metal hosts. Also included will be a brief demonstration of running a Galera M...
IoT offers a value of almost $4 trillion to the manufacturing industry through platforms that can improve margins, optimize operations & drive high performance work teams. By using IoT technologies as a foundation, manufacturing customers are integrating worker safety with manufacturing systems, driving deep collaboration and utilizing analytics to exponentially increased per-unit margins. However, as Benoit Lheureux, the VP for Research at Gartner points out, “IoT project implementers often ...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Tintri VM-aware storage is the simplest for virtualized applications and cloud. Organizations including GE, Toyota, United Healthcare, NASA and 6 of the Fortune 15 have said “No to LUNs.” With Tintri they mana...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, will compare the Jevons Paradox to modern-day enterprise IT, e...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Complete Internet of Things (IoT) embedded device security is not just about the device but involves the entire product’s identity, data and control integrity, and services traversing the cloud. A device can no longer be looked at as an island; it is a part of a system. In fact, given the cross-domain interactions enabled by IoT it could be a part of many systems. Also, depending on where the device is deployed, for example, in the office building versus a factory floor or oil field, security ha...
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
Fifty billion connected devices and still no winning protocols standards. HTTP, WebSockets, MQTT, and CoAP seem to be leading in the IoT protocol race at the moment but many more protocols are getting introduced on a regular basis. Each protocol has its pros and cons depending on the nature of the communications. Does there really need to be only one protocol to rule them all? Of course not. In his session at @ThingsExpo, Chris Matthieu, co-founder and CTO of Octoblu, walk you through how Oct...
SYS-CON Events announced today that Bsquare has been named “Silver Sponsor” of SYS-CON's @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. For more than two decades, Bsquare has helped its customers extract business value from a broad array of physical assets by making them intelligent, connecting them, and using the data they generate to optimize business processes.
Whether they’re located in a public, private, or hybrid cloud environment, cloud technologies are constantly evolving. While the innovation is exciting, the end mission of delivering business value and rapidly producing incremental product features is paramount. In his session at @DevOpsSummit at 19th Cloud Expo, Kiran Chitturi, CTO Architect at Sungard AS, will discuss DevOps culture, its evolution of frameworks and technologies, and how it is achieving maturity. He will also cover various st...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Bradley Holt, Developer Advocate a...
SYS-CON Events announced today that Niagara Networks will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Niagara Networks offers the highest port-density systems, and the most complete Next-Generation Network Visibility systems including Network Packet Brokers, Bypass Switches, and Network TAPs.
SYS-CON Events announced today that Secure Channels will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The bedrock of Secure Channels Technology is a uniquely modified and enhanced process based on superencipherment. Superencipherment is the process of encrypting an already encrypted message one or more times, either using the same or a different algorithm.
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...