Welcome!

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, @DXWorldExpo

@CloudExpo: Article

Take Control of Your Schemalessness with Dynamic Schemas

Addressing the inflexibility of structured data by enabling schemaless data to be dynamically and logically structured

Static data structures have been at the heart of data processing tools since the dawn of computing, but they have always limited the flexibility of the organization leveraging the data. Recently, the rise of flexible formats like JSON have led to schemaless data as an attempt to increase agility. However, schemaless data have proven difficult to work with, because of hidden rigid structure in the form of implied schemas.

EnterpriseWeb addresses the problems of both the inflexibility of structured data as well as the impracticality of schemaless data, by enabling schemaless data to be dynamically and logically structured.

From the fixed-length fields of the 1950s, to the relational structures of modern database management systems, to the semistructured data formats XML and JSON, the structure of our data has always informed code about how it should be processed. Data are defined by their relationships, and we used to hard-code those relationships into rigid structures. That approach allows only one static view, which is difficult to work with, and even more difficult to change. Nevertheless, such rigid data structures - and the models that represent them - are an integral part of enterprise information management.

Traditional relational database management systems (RDBMSs) exemplify this point with their static entity-relationship models (ERMs) and tightly interconnected data structures. XML improves this situation slightly, allowing semi-structured information, but schemas still constrain flexibility and performance. With both approaches, fixed definitions, views, and reports limit the ability for businesses to freely transform information into insight and become obstacles to systemwide change.

The Rise of Schemalessness
This challenge of inflexible data structures has given rise to schemaless data. With JSON in particular, we can create whatever data structure we like when we author data. We don't have to shoehorn data into rigid data structures, thus allowing every record to have its own structure.

But there is a problem with schemaless data. Consider this simple task: how do you create a query for all the addresses in a particular Zip Code if every record has a different name or format for Zip Code? Schemalessness, after all, isn't magic - even schemaless data require some kind of metadata so the code will know how to process such information, what software development guru Martin Fowler calls an implied schema.

Implied schemas represent the structure inherent in any data record. If each address record has its own format, then that format provides the implied schema for that record. Dealing with implied schemas thus falls to the developer, who must figure out how to code software to process these implied schemas, which are different for each and every record.

In Fowler's tutorial on schemalessness, he explains the pros and cons of implied schemas. Despite acknowledging the power of schemalessness to support more flexible and responsive user experiences, he recommends avoiding it and implied schemas for developer convenience. Good advice with respect to traditional software, but the world of data is changing. Today we live in an increasingly schemaless world, where more often than not, the structure of our data is fluid or nonexistent.

Raising the Discussion to Dynamic Schemas
Fowler makes it clear that in the past it has been impractical from the developer's perspective to work systematically with schemaless data, because implied schemas are difficult to deal with. After all, structure is itself useful, and isn't the problem per se. Rather, how to avoid the limitations of static structure without falling into the trap of unmanageable schemaless data that is the real challenge.

EnterpriseWeb's unique approach to modeling solves this critically important challenge by leveraging dynamic schemas that have flexible, metadata-driven relationships with underlying information. Using metadata this way separates concerns, letting people consider relationships from multiple perspectives, rather than from a single static point of view. In addition, it's now possible to change and extend metadata to meet diverse business needs without disruption.

Instead of settling for complex ERMs with their inflexible, tightly coupled data structures or dealing with the coding complexities of implied schemas, developers can project dynamic schemas from the metadata simply by writing different transformations. As a result, dynamic schemas are developer friendly and dynamic - a welcome change from the difficult problem of schemalessness.

Add an Agent for Performance
So far so good, but how do we build software to process all such data in a general way, freeing ourselves from custom coding for implicit schemas? The solution is an intelligent agent.

EnterpriseWeb's intelligent agent, SmartAlex™, is a distributable transaction manager that resolves dynamic schemas for each interaction. Every human or system client interaction is a request for SmartAlex to interpret dynamic schemas (as well as other models and additional metadata) and translate them to a context-specific set of resources in order to construct a custom response.

This Agent-Oriented approach maximizes performance for such dynamic computing. In the background, SmartAlex handles all run time connection and transformation details, sparing programmers from manually integrating resources for varied and unanticipated uses, greatly improving IT productivity while enabling business agility.

SmartAlex logs all system events, indexes all new and updated resources, and tags all changes in relationships for detailed and navigable audit history. This practice creates a feedback loop as SmartAlex leverages the same indexed logs to guide its execution. Data, code, and user interface components, as well as connectors for federated services, systems, databases, and devices, can be updated or replaced without breaking related apps and processes - as SmartAlex is ‘aware' of the changes. In this way EnterpriseWeb supports real time exception and change management for resilient solutions that can evolve naturally.

The EnterpriseWeb Take
Schemalessness was a reaction to the limitations of structured data. People struggled with the constraints of static structure, and figured that if they simply got rid of structure, then the problem would go away. But this move was merely a shell game, as the limitations of fixed schemas shifted to implied schemas, now without the benefits of structure to inform the code responsible for their processing.

The solution is to raise the level of abstraction, and instead of arguing over fixed vs. implied schemas, to work at the dynamic schema level. Such an approach is model-driven, allowing application designers to build models that capture their data structures, and allowing an intelligent agent to use the metadata each model represents to meet the specific needs of each interaction. The real lesson here is that the solution to resolving the challenge of schemalessness combines both dynamic schemas and the action of the agent. Stay tuned to my next newsletter for more information.

More Stories By Jason Bloomberg

Jason Bloomberg is a leading IT industry analyst, Forbes contributor, keynote speaker, and globally recognized expert on multiple disruptive trends in enterprise technology and digital transformation. He is ranked #5 on Onalytica’s list of top Digital Transformation influencers for 2018 and #15 on Jax’s list of top DevOps influencers for 2017, the only person to appear on both lists.

As founder and president of Agile Digital Transformation analyst firm Intellyx, he advises, writes, and speaks on a diverse set of topics, including digital transformation, artificial intelligence, cloud computing, devops, big data/analytics, cybersecurity, blockchain/bitcoin/cryptocurrency, no-code/low-code platforms and tools, organizational transformation, internet of things, enterprise architecture, SD-WAN/SDX, mainframes, hybrid IT, and legacy transformation, among other topics.

Mr. Bloomberg’s articles in Forbes are often viewed by more than 100,000 readers. During his career, he has published over 1,200 articles (over 200 for Forbes alone), spoken at over 400 conferences and webinars, and he has been quoted in the press and blogosphere over 2,000 times.

Mr. Bloomberg is the author or coauthor of four books: The Agile Architecture Revolution (Wiley, 2013), Service Orient or Be Doomed! How Service Orientation Will Change Your Business (Wiley, 2006), XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996). His next book, Agile Digital Transformation, is due within the next year.

At SOA-focused industry analyst firm ZapThink from 2001 to 2013, Mr. Bloomberg created and delivered the Licensed ZapThink Architect (LZA) Service-Oriented Architecture (SOA) course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, which was acquired by Dovel Technologies in 2011.

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting), and several software and web development positions.

Latest Stories
CI/CD is conceptually straightforward, yet often technically intricate to implement since it requires time and opportunities to develop intimate understanding on not only DevOps processes and operations, but likely product integrations with multiple platforms. This session intends to bridge the gap by offering an intense learning experience while witnessing the processes and operations to build from zero to a simple, yet functional CI/CD pipeline integrated with Jenkins, Github, Docker and Azure...
"We do one of the best file systems in the world. We learned how to deal with Big Data many years ago and we implemented this knowledge into our software," explained Jakub Ratajczak, Business Development Manager at MooseFS, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Today, we have more data to manage than ever. We also have better algorithms that help us access our data faster. Cloud is the driving force behind many of the data warehouse advancements we have enjoyed in recent years. But what are the best practices for storing data in the cloud for machine learning and data science applications?
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
All zSystem customers have a significant new business opportunity to extend their reach to new customers and markets with new applications and services, and to improve the experience of existing customers. This can be achieved by exposing existing z assets (which have been developed over time) as APIs for accessing Systems of Record, while leveraging mobile and cloud capabilities with new Systems of Engagement applications. In this session, we will explore business drivers with new Node.js apps ...
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addres...
The technologies behind big data and cloud computing are converging quickly, offering businesses new capabilities for fast, easy, wide-ranging access to data. However, to capitalize on the cost-efficiencies and time-to-value opportunities of analytics in the cloud, big data and cloud technologies must be integrated and managed properly. Pythian's Director of Big Data and Data Science, Danil Zburivsky will explore: The main technology components and best practices being deployed to take advantage...
For years the world's most security-focused and distributed organizations - banks, military/defense agencies, global enterprises - have sought to adopt cloud technologies that can reduce costs, future-proof against data growth, and improve user productivity. The challenges of cloud transformation for these kinds of secure organizations have centered around data security, migration from legacy systems, and performance. In our presentation, we will discuss the notion that cloud computing, properl...
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
By 2021, 500 million sensors are set to be deployed worldwide, nearly 40x as many as exist today. In order to scale fast and keep pace with industry growth, the team at Unacast turned to the public cloud to build the world's largest location data platform with optimal scalability, minimal DevOps, and maximum flexibility. Drawing from his experience with the Google Cloud Platform, VP of Engineering Andreas Heim will speak to the architecture of Unacast's platform and developer-focused processes.
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
The vast majority of businesses now use cloud services, yet many still struggle with realizing the full potential of their IT investments. In particular, small and medium-sized businesses (SMBs) lack the internal IT staff and expertise to fully move to and manage workloads in public cloud environments. Speaker Todd Schwartz will help session attendees better navigate the complex cloud market and maximize their technical investments. The SkyKick co-founder and co-CEO will share the biggest challe...
When applications are hosted on servers, they produce immense quantities of logging data. Quality engineers should verify that apps are producing log data that is existent, correct, consumable, and complete. Otherwise, apps in production are not easily monitored, have issues that are difficult to detect, and cannot be corrected quickly. Tom Chavez presents the four steps that quality engineers should include in every test plan for apps that produce log output or other machine data. Learn the ste...
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions need to be truly scalable. Far from it. There are at least six major pain points that companies experience when they try to deploy and run Kubernetes in their complex environments. In this presentation, the speaker will d...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...