Welcome!

Related Topics: @BigDataExpo, Java IoT, Linux Containers, Agile Computing, @CloudExpo, Cloud Security

@BigDataExpo: Blog Post

In-Memory Database vs. In-Memory Data Grid By @GridGain | @CloudExpo [#BigData]

It's easy to start with technical differences between the two categories

A few months ago, I spoke at the conference where I explained the difference between caching and an in-memory data grid. Today, having realized that many people are also looking to better understand the difference between two major categories in in-memory computing: In-Memory Database and In-Memory Data Grid, I am sharing the succinct version of my thinking on this topic - thanks to a recent analyst call that helped to put everything in place :)

TL;DR

Skip to conclusion to get the bottom line.

Nomenclature
Let's clarify the naming and buzzwords first. In-Memory Database (IMDB) is a well-established category name and it is typically used unambiguously.

It is important to note that there is a new crop of traditional databases with serious In-Memory "options". That includes MS SQL 2014, Oracle's Exalytics and Exadata, and IBM DB2 with BLU offerings. The line is blurry between these and the new pure In-Memory Databases, and for the simplicity I'll continue to call them In-Memory Databases.

In-Memory Data Grids (IMDGs) are sometimes (but not very frequently) called In-Memory NoSQL/NewSQL Databases. Although the latter can be more accurate in some case - I am going to use the In-Memory Data Grid term in this article, as it tends to be the more widely used term.

Note that there are also In-Memory Compute Grids and In-Memory Computing Platforms that include or augment many of the features of In-Memory Data Grids and In-Memory Databases.

Confusing, eh? It is... and for consistency - going forward we'll just use these terms for the two main categories:

  • In-Memory Database
  • In-Memory Data Grid

Tiered Storage
It is also important to nail down what we mean by "In-Memory". Surprisingly - there's a lot of confusion here as well as some vendors refer to SSDs, Flash-on-PCI, Memory Channel Storage, and, of course, DRAM as "In-Memory".

In reality, most vendors support a Tiered Storage Model where some portion of the data is stored in DRAM (the fastest storage but with limited capacity) and then it gets overflown to a verity of flash or disk devices (slower but with more capacity) - so it is rarely a DRAM-only or Flash-only product. However, it's important to note that most products in both categories are often biased towards mostly DRAM or mostly flash/disk storage in their architecture.

Bottom line is that products vary greatly in what they mean by "In-Memory" but in the end they all have a significant "In-Memory" component.

Technical Differences
It's easy to start with technical differences between the two categories.

Most In-Memory Databases are your father's RDBMS that store data "in memory" instead of disk. That's practically all there's to it. They provide good SQL support with only a modest list of unsupported SQL features, shipped with ODBC/JDBC drivers and can be used in place of existing RDBMS often without significant changes.

In-Memory Data Grids typically lack full ANSI SQL support but instead provide MPP-based (Massively Parallel Processing) capabilities where data is spread across large cluster of commodity servers and processed in explicitly parallel fashion. The main access pattern is key/value access, MapReduce, various forms of HPC-like processing, and a limited distributed SQL querying and indexing capabilities.

It is important to note that there is a significant crossover from In-Memory Data Grids to In-Memory Databases in terms of SQL support. GridGain, for example, provides pretty serious and constantly growing support for SQL including pluggable indexing, distributed joins optimization, custom SQL functions, etc.

Speed Only vs. Speed + Scalability
One of the crucial differences between In-Memory Data Grids and In-Memory Databases lies in the ability to scale to hundreds and thousands of servers. That is the In-Memory Data Grid's inherent capability for such scale due to their MPP architecture, and the In-Memory Database's explicit inability to scale due to fact that SQL joins, in general, cannot be efficiently performed in a distribution context.

It's one of the dirty secrets of In-Memory Databases: one of their most useful features, SQL joins, is also is their Achilles heel when it comes to scalability. This is the fundamental reason why most existing SQL databases (disk or memory based) are based on vertically scalable SMP (Symmetrical Processing) architecture unlike In-Memory Data Grids that utilize the much more horizontally scalable MPP approach.

It's important to note that both In-Memory Data Grids and In-Memory Database can achieve similar speed in a local non-distributed context. In the end - they both do all processing in memory.

But only In-Memory Data Grids can natively scale to hundreds and thousands of nodes providing unprecedented scalability and unrivaled throughput.

Replace Database vs. Change Application
Apart from scalability, there is another difference that is important for uses cases where In-Memory Data Grids or In-Memory Database are tasked with speeding up existing systems or applications.

An In-Memory Data Grid always works with an existing database providing a layer of massively distributed in-memory storage and processing between the database and the application. Applications then rely on this layer for super-fast data access and processing. Most In-Memory Data Grids can seamlessly read-through and write-through from and to databases, when necessary, and generally are highly integrated with existing databases.

In exchange - developers need to make some changes to the application to take advantage of these new capabilities. The application no longer "talks" SQL only, but needs to learn how to use MPP, MapReduce or other techniques of data processing.

In-Memory Databases provide almost a mirror opposite picture: they often requirereplacing your existing database (unless you use one of those In-Memory "options" to temporary boost your database performance) - but will demand significantly less changes to the application itself as it will continue to rely on SQL (albeit a modified dialect of it).

In the end, both approaches have their advantages and disadvantages, and they may often depend in part on organizational policies and politics as much as on their technical merits.

Conclusion
The bottom line should be pretty clear by now.

If you are developing a green-field, brand new system or application the choice is pretty clear in favor of In-Memory Data Grids. You get the best of the two worlds: you get to work with the existing databases in your organization where necessary, and enjoy tremendous performance and scalability benefits of In-Memory Data Grids - both of which are highly integrated.

If you are, however, modernizing your existing enterprise system or application the choice comes down to this:

You will want to use an In-Memory Database if the following applies to you:

  • You can replace or upgrade your existing disk-based RDBMS
  • You cannot make changes to your applications
  • You care about speed, but don't care as much about scalability

In other words - you boost your application's speed by replacing or upgrading RDBMS without significantly touching the application itself.

On the other hand, you want to use an In-Memory Data Grid if the following applies to you:

  • You cannot replace your existing disk-based RDBMS
  • You can make changes to (the data access subsystem of) your application
  • You care about speed and especially about scalability, and don't want to trade one for the other

In other words - with an In-Memory Data Grid you can boost your application's speed and provide massive scale by tweaking the application, but without making changes to your existing database.

It can be summarized it in the following table:


In-Memory Data GridIn-Memory Database
Existing Application Changed Unchanged
Existing RDBMS Unchanged Changed or Replaced
Speed Yes Yes
Max. Scalability Yes No

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

Latest Stories
In 2014, Amazon announced a new form of compute called Lambda. We didn't know it at the time, but this represented a fundamental shift in what we expect from cloud computing. Now, all of the major cloud computing vendors want to take part in this disruptive technology. In his session at 20th Cloud Expo, Doug Vanderweide, an instructor at Linux Academy, discussed why major players like AWS, Microsoft Azure, IBM Bluemix, and Google Cloud Platform are all trying to sidestep VMs and containers wit...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations might...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists examined how DevOps helps to meet the de...
When growing capacity and power in the data center, the architectural trade-offs between server scale-up vs. scale-out continue to be debated. Both approaches are valid: scale-out adds multiple, smaller servers running in a distributed computing model, while scale-up adds fewer, more powerful servers that are capable of running larger workloads. It’s worth noting that there are additional, unique advantages that scale-up architectures offer. One big advantage is large memory and compute capacity...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
The taxi industry never saw Uber coming. Startups are a threat to incumbents like never before, and a major enabler for startups is that they are instantly “cloud ready.” If innovation moves at the pace of IT, then your company is in trouble. Why? Because your data center will not keep up with frenetic pace AWS, Microsoft and Google are rolling out new capabilities. In his session at 20th Cloud Expo, Don Browning, VP of Cloud Architecture at Turner, posited that disruption is inevitable for comp...
No hype cycles or predictions of zillions of things here. IoT is big. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, Associate Partner at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He discussed the evaluation of communication standards and IoT messaging protocols, data analytics considerations, edge-to-cloud tec...
"When we talk about cloud without compromise what we're talking about is that when people think about 'I need the flexibility of the cloud' - it's the ability to create applications and run them in a cloud environment that's far more flexible,” explained Matthew Finnie, CTO of Interoute, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Cloud applications are seeing a deluge of requests to support the exploding advanced analytics market. “Open analytics” is the emerging strategy to deliver that data through an open data access layer, in the cloud, to be directly consumed by external analytics tools and popular programming languages. An increasing number of data engineers and data scientists use a variety of platforms and advanced analytics languages such as SAS, R, Python and Java, as well as frameworks such as Hadoop and Spark...
"We are a monitoring company. We work with Salesforce, BBC, and quite a few other big logos. We basically provide monitoring for them, structure for their cloud services and we fit into the DevOps world" explained David Gildeh, Co-founder and CEO of Outlyer, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
The Internet giants are fully embracing AI. All the services they offer to their customers are aimed at drawing a map of the world with the data they get. The AIs from these companies are used to build disruptive approaches that cannot be used by established enterprises, which are threatened by these disruptions. However, most leaders underestimate the effect this will have on their businesses. In his session at 21st Cloud Expo, Rene Buest, Director Market Research & Technology Evangelism at Ara...
SYS-CON Events announced today that Silicon India has been named “Media Sponsor” of SYS-CON's 21st International Cloud Expo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Published in Silicon Valley, Silicon India magazine is the premiere platform for CIOs to discuss their innovative enterprise solutions and allows IT vendors to learn about new solutions that can help grow their business.
Join us at Cloud Expo June 6-8 to find out how to securely connect your cloud app to any cloud or on-premises data source – without complex firewall changes. More users are demanding access to on-premises data from their cloud applications. It’s no longer a “nice-to-have” but an important differentiator that drives competitive advantages. It’s the new “must have” in the hybrid era. Users want capabilities that give them a unified view of the data to get closer to customers and grow business. The...
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to...