Click here to close now.

Welcome!

Related Topics: @BigDataExpo, Java IoT, Linux Containers, Agile Computing, @CloudExpo, Cloud Security

@BigDataExpo: Blog Post

In-Memory Database vs. In-Memory Data Grid By @GridGain | @CloudExpo [#BigData]

It's easy to start with technical differences between the two categories

A few months ago, I spoke at the conference where I explained the difference between caching and an in-memory data grid. Today, having realized that many people are also looking to better understand the difference between two major categories in in-memory computing: In-Memory Database and In-Memory Data Grid, I am sharing the succinct version of my thinking on this topic - thanks to a recent analyst call that helped to put everything in place :)

TL;DR

Skip to conclusion to get the bottom line.

Nomenclature
Let's clarify the naming and buzzwords first. In-Memory Database (IMDB) is a well-established category name and it is typically used unambiguously.

It is important to note that there is a new crop of traditional databases with serious In-Memory "options". That includes MS SQL 2014, Oracle's Exalytics and Exadata, and IBM DB2 with BLU offerings. The line is blurry between these and the new pure In-Memory Databases, and for the simplicity I'll continue to call them In-Memory Databases.

In-Memory Data Grids (IMDGs) are sometimes (but not very frequently) called In-Memory NoSQL/NewSQL Databases. Although the latter can be more accurate in some case - I am going to use the In-Memory Data Grid term in this article, as it tends to be the more widely used term.

Note that there are also In-Memory Compute Grids and In-Memory Computing Platforms that include or augment many of the features of In-Memory Data Grids and In-Memory Databases.

Confusing, eh? It is... and for consistency - going forward we'll just use these terms for the two main categories:

  • In-Memory Database
  • In-Memory Data Grid

Tiered Storage
It is also important to nail down what we mean by "In-Memory". Surprisingly - there's a lot of confusion here as well as some vendors refer to SSDs, Flash-on-PCI, Memory Channel Storage, and, of course, DRAM as "In-Memory".

In reality, most vendors support a Tiered Storage Model where some portion of the data is stored in DRAM (the fastest storage but with limited capacity) and then it gets overflown to a verity of flash or disk devices (slower but with more capacity) - so it is rarely a DRAM-only or Flash-only product. However, it's important to note that most products in both categories are often biased towards mostly DRAM or mostly flash/disk storage in their architecture.

Bottom line is that products vary greatly in what they mean by "In-Memory" but in the end they all have a significant "In-Memory" component.

Technical Differences
It's easy to start with technical differences between the two categories.

Most In-Memory Databases are your father's RDBMS that store data "in memory" instead of disk. That's practically all there's to it. They provide good SQL support with only a modest list of unsupported SQL features, shipped with ODBC/JDBC drivers and can be used in place of existing RDBMS often without significant changes.

In-Memory Data Grids typically lack full ANSI SQL support but instead provide MPP-based (Massively Parallel Processing) capabilities where data is spread across large cluster of commodity servers and processed in explicitly parallel fashion. The main access pattern is key/value access, MapReduce, various forms of HPC-like processing, and a limited distributed SQL querying and indexing capabilities.

It is important to note that there is a significant crossover from In-Memory Data Grids to In-Memory Databases in terms of SQL support. GridGain, for example, provides pretty serious and constantly growing support for SQL including pluggable indexing, distributed joins optimization, custom SQL functions, etc.

Speed Only vs. Speed + Scalability
One of the crucial differences between In-Memory Data Grids and In-Memory Databases lies in the ability to scale to hundreds and thousands of servers. That is the In-Memory Data Grid's inherent capability for such scale due to their MPP architecture, and the In-Memory Database's explicit inability to scale due to fact that SQL joins, in general, cannot be efficiently performed in a distribution context.

It's one of the dirty secrets of In-Memory Databases: one of their most useful features, SQL joins, is also is their Achilles heel when it comes to scalability. This is the fundamental reason why most existing SQL databases (disk or memory based) are based on vertically scalable SMP (Symmetrical Processing) architecture unlike In-Memory Data Grids that utilize the much more horizontally scalable MPP approach.

It's important to note that both In-Memory Data Grids and In-Memory Database can achieve similar speed in a local non-distributed context. In the end - they both do all processing in memory.

But only In-Memory Data Grids can natively scale to hundreds and thousands of nodes providing unprecedented scalability and unrivaled throughput.

Replace Database vs. Change Application
Apart from scalability, there is another difference that is important for uses cases where In-Memory Data Grids or In-Memory Database are tasked with speeding up existing systems or applications.

An In-Memory Data Grid always works with an existing database providing a layer of massively distributed in-memory storage and processing between the database and the application. Applications then rely on this layer for super-fast data access and processing. Most In-Memory Data Grids can seamlessly read-through and write-through from and to databases, when necessary, and generally are highly integrated with existing databases.

In exchange - developers need to make some changes to the application to take advantage of these new capabilities. The application no longer "talks" SQL only, but needs to learn how to use MPP, MapReduce or other techniques of data processing.

In-Memory Databases provide almost a mirror opposite picture: they often requirereplacing your existing database (unless you use one of those In-Memory "options" to temporary boost your database performance) - but will demand significantly less changes to the application itself as it will continue to rely on SQL (albeit a modified dialect of it).

In the end, both approaches have their advantages and disadvantages, and they may often depend in part on organizational policies and politics as much as on their technical merits.

Conclusion
The bottom line should be pretty clear by now.

If you are developing a green-field, brand new system or application the choice is pretty clear in favor of In-Memory Data Grids. You get the best of the two worlds: you get to work with the existing databases in your organization where necessary, and enjoy tremendous performance and scalability benefits of In-Memory Data Grids - both of which are highly integrated.

If you are, however, modernizing your existing enterprise system or application the choice comes down to this:

You will want to use an In-Memory Database if the following applies to you:

  • You can replace or upgrade your existing disk-based RDBMS
  • You cannot make changes to your applications
  • You care about speed, but don't care as much about scalability

In other words - you boost your application's speed by replacing or upgrading RDBMS without significantly touching the application itself.

On the other hand, you want to use an In-Memory Data Grid if the following applies to you:

  • You cannot replace your existing disk-based RDBMS
  • You can make changes to (the data access subsystem of) your application
  • You care about speed and especially about scalability, and don't want to trade one for the other

In other words - with an In-Memory Data Grid you can boost your application's speed and provide massive scale by tweaking the application, but without making changes to your existing database.

It can be summarized it in the following table:


In-Memory Data GridIn-Memory Database
Existing Application Changed Unchanged
Existing RDBMS Unchanged Changed or Replaced
Speed Yes Yes
Max. Scalability Yes No

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

Latest Stories
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises ar...
While DevOps most critically and famously fosters collaboration, communication, and integration through cultural change, culture is more of an output than an input. In order to actively drive cultural evolution, organizations must make substantial organizational and process changes, and adopt new technologies, to encourage a DevOps culture. Moderated by Andi Mann, panelists discussed how to balance these three pillars of DevOps, where to focus attention (and resources), where organizations migh...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
SYS-CON Events announced today that Alert Logic, the leading provider of Security-as-a-Service solutions for the cloud, has been named “Bronze Sponsor” of SYS-CON's 17th International Cloud Expo® and DevOps Summit 2015 Silicon Valley, which will take place November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Alert Logic provides Security-as-a-Service for on-premises, cloud, and hybrid IT infrastructures, delivering deep security insight and continuous protection for cust...
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than
Agile, which started in the development organization, has gradually expanded into other areas downstream - namely IT and Operations. Teams – then teams of teams – have streamlined processes, improved feedback loops and driven a much faster pace into IT departments which have had profound effects on the entire organization. In his session at DevOps Summit, Anders Wallgren, Chief Technology Officer of Electric Cloud, will discuss how DevOps and Continuous Delivery have emerged to help connect dev...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding bu...
SYS-CON Events announced today that Harbinger Systems will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Harbinger Systems is a global company providing software technology services. Since 1990, Harbinger has developed a strong customer base worldwide. Its customers include software product companies ranging from hi-tech start-ups in Silicon Valley to leading product companies in the US a...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the ...
SYS-CON Events announced today that Secure Infrastructure & Services will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Secure Infrastructure & Services (SIAS) is a managed services provider of cloud computing solutions for the IBM Power Systems market. The company helps mid-market firms built on IBM hardware platforms to deploy new levels of reliable and cost-effective computing and hig...
DevOps Summit, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development...
To many people, IoT is a buzzword whose value is not understood. Many people think IoT is all about wearables and home automation. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed some incredible game-changing use cases and how they are transforming industries like agriculture, manufacturing, health care, and smart cities. He will discuss cool technologies like smart dust, robotics, smart labels, and much more. Prepare...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend...