Welcome!

Related Topics: @DevOpsSummit, Java IoT, Microservices Expo, Linux Containers, @CloudExpo, @DXWorldExpo

@DevOpsSummit: Blog Post

Software Quality Metrics for Your Continuous Delivery Pipeline | Part 3

It is safe to say that insightful logging and performance are two opposite goals

Let me ask you a question: would you say that you have implemented logging correctly for your application? Correct in the sense that it will provide you with all the insights you require to keep your business going once your users are struck by errors? And in a way that does not adversely impact your application performance? Honestly, I bet you have not. Today I will explain why you should turn off logging completely in production because of its limitations:

  • Relies on Developers
  • Lacks Context
  • Impacts Performance

Intrigued? Bear with me and I will show you how you can still establish and maintain a healthy and useful logging strategy for your deployment pipeline, from development to production, guided by metrics.

What Logging Can Do for You
Developers, including myself, often write log messages because they are lazy. Why should I set a breakpoint and fire up a debugger if it is so much more convenient to dump something to my console via a simple println()? This simple yet effective mechanism also works on headless machines where no IDE is installed, such as staging or production environments:

System.out.println("Been here, done that.");

Careful coders would use a logger to prevent random debug messages from appearing in production logs and additionally use guard statements to prevent unnecessary parameter construction:

if (logger.isDebugEnabled()) {
logger.debug("Entry number: " + i + " is " + String.valueOf(entry[i]));
}

Anyways, the point about logging is that that traces of log messages allow developers to better understand what their program is doing in execution. Does my program take this branch or that branch? Which statements were executed before that exception was thrown? I have done this at least a million of times, and most likely so have you:

if (condition) {
logger.debug("7: yeah!")
} else {
logger.debug("8: DAMN!!!")
}

Test Automation Engineers, usually developers by trade, equally use logging to better understand how the code under test complies with their test scenarios:

class AgentSpec extends spock.lang.Specification {

def "Agent.compute()"() {
def agent = AgentPool.getAgent()

when:
def result = agent.compute(TestFixtures.getData())

then:
logger.debug("result: "  + result);
result == expected
}
}

Logging is, undoubtedly, a helpful tool during development and I would argue that developers should use it as freely as possible if it helps them to understand and troubleshoot their code.

In production, application logging is useful for tracking certain events, such as the occurrence of a particular exception, but it usually fails to deliver what it is so often mistakenly used for: as a mechanism for analyzing application failures in production. Why?

Because approaches to achieving this goal with logging are naturally brittle: their usefulness depends heavily on developers, messages are without context, and if not designed carefully, logging may severely slow down your application.

Secretly, what you are really hoping to get from your application logs, in the one or the other form, is something like this:

A logging strategy that delivers out-of-the-box using dynaTrace: user context, all relevant data in place, zero config

The Limits of Logging
Logging Relies on Developers
Let's face it: logging is, inherently, a developer-centric mechanism. The usefulness of your application logs stands and falls with your developers. A best practice for logging in production says: "don't log too much" (see Optimal Logging @ Google testing blog). This sounds sensible, but what does this actually mean? If we recall the basic motivation behind logging in production, we could equally rephrase this as "log just enough information you need to know about a failure that enables you to take adequate actions". So, what would it take your developers to provide such actionable insights? Developers would need to correctly anticipate where in the code errors would occur in production. They would also need to collect any relevant bits of information along an execution path that bear these insights and, last but not least, present them in a meaningful way so that others can understand, too. Developers are, no doubt, a critical factor to the practicality of your application logs.

Logging Lacks Context
Logging during development is so helpful because developers and testers usually examine smaller, co-located units of code that are executed in a single thread. It is fairly easy to maintain an overview under such simulated conditions, such as a test scenario:

13:49:59 INFO com.company.product.users.UserManager - Registered user ‘foo'.
13:49:59 INFO com.company.product.users.UserManager - User ‘foo' has logged in.
13:49:59 INFO com.company.product.users.UserManager - User ‘foo' has logged out.

But how can you reliably identify an entire failing user transaction in a real-life scenario, that is, in a heavily multi-threaded environment with multiple tiers that serve piles of distributed log files? I say, hardly at all. Sure, you can go mine for certain isolated events, but you cannot easily extract causal relationships from an incoherent, distributed set of log messages:

13:49:59 INFO com.company.product.users.UserManager - User ‘foo' has logged in.
13:49:59 INFO com.company.product.users.UserManager - User ‘bar' has logged in.
...
13:49:60 SEVERE org.hibernate.exception.JDBCConnectionException: could not execute query
at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:99)
...

After all, the ability to identify such contexts is key to deciding why a particular user action failed.

Logging Impacts Performance
What is a thorough logging strategy worth if your users cannot use your application because it is terribly slow? In case you did not know, logging, especially during peak load times, may severely slow down your application. Let's have a quick look at some of the reasons:

Writing log messages from the application's memory to persistent storage, usually to the file system, demands substantial I/O (see Top Performance Mistakes when moving from Test to Production: Excessive Logging). Traditional logger implementations wrote files by issuing synchronous I/O requests, which put the calling thread into a wait state until the log message was fully written to disk.

In some cases, the logger itself may cause a decent bottle-neck: in the Log4j library (up to version 1.2), every single log activity results in a call to an internal template method Appender.doAppend() that is synchronized for thread-safety (see Multithreading issues - doAppend is synchronised?). The practical implication of this is that threads, which log to the same Appender, for example a FileAppender, must queue up with any other threads writing logs. Consequently, the application spends valuable time waiting in synchronization instead of doing whatever the app was actually designed to do. This will hurt performance, especially in heavily multi-thread environments like web application servers.

These performance effects can be vastly amplified when exception logging comes into play: exception data, such as error message, stack trace and any other piggy-backed exceptions ("initial cause exceptions") greatly increase the amount of data that needs to be logged. Additionally, once a system is in a faulty state, the same exceptions tend to appear over and over again, further hurting application performance. We had once monitored a 30% drawdown on CPU resources due to more than 180,000 exceptions being thrown in only 5 minutes on one of our application servers (see Performance Impact of Exceptions: Why Ops, Test and Dev need to care). If we had written these exceptions to the file system, they would have trashed I/O, filled up our disk space in no time and had considerably increased our response times.

Subsequently, it is safe to say that insightful logging and performance are two opposite goals: if you want the one, then you have to make a compromise on the other.

For more logging tips click here for the full article.

More Stories By Martin Etmajer

Leveraging his outstanding technical skills as a lead software engineer, Martin Etmajer has been a key contributor to a number of large-scale systems across a range of industries. He is as passionate about great software as he is about applying Lean Startup principles to the development of products that customers love.

Martin is a life-long learner who frequently speaks at international conferences and meet-ups. When not spending time with family, he enjoys swimming and Yoga. He holds a master's degree in Computer Engineering from the Vienna University of Technology, Austria, with a focus on dependable distributed real-time systems.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software. They hope to capture value from emerging technologies such as IoT, SDN, and AI. Ultimately, irrespective of the vertical, it is about deriving value from independent software applications participating in an ecosystem as one comprehensive solution. In his session at @ThingsExpo, Kausik Sridhar, founder and CTO of Pulzze Systems, discussed how given the magnitude of today's application ...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...