Welcome!

News Feed Item

Intel Re-architects the Fundamental Building Block for High-Performance Computing

INTERNATIONAL SUPERCOMPUTING CONFERENCE (ISC) – Intel Corporation today announced new details for its next-generation Intel® Xeon Phi™ processors, code-named Knights Landing, which promise to extend the benefits of code modernization investments being made for current generation products. These include a new high-speed fabric that will be integrated on-package and high-bandwidth, on-package memory that combined, promise to accelerate the rate of scientific discovery. Currently memory and fabrics are available as discrete components in servers limiting the performance and density of supercomputers.

The new interconnect technology, called Intel® Omni Scale Fabric, is designed to address the requirements of the next generations of high-performance computing (HPC). Intel Omni Scale Fabric will be integrated in the next generation of Intel Xeon Phi processors as well as future general-purpose Intel® Xeon® processors. This integration along with the fabric’s HPC-optimized architecture is designed to address the performance, scalability, reliability, power and density requirements of future HPC deployments. It is designed to balance price and performance for entry-level through extreme-scale deployments.

“Intel is re-architecting the fundamental building block of HPC systems by integrating the Intel Omni Scale Fabric into Knights Landing, marking a significant inflection and milestone for the HPC industry,” said Charles Wuischpard, vice president and general manager of Workstations and HPC at Intel. “Knights Landing will be the first true many-core processor to address today’s memory and I/O performance challenges. It will allow programmers to leverage existing code and standard programming models to achieve significant performance gains on a wide set of applications. Its platform design, programming model and balanced performance makes it the first viable step towards exascale.”

Knights Landing – Unmatched Integration

Knights Landing will be available as a standalone processor mounted directly on the motherboard socket in addition to the PCIe-based card option. The socketed option removes programming complexities and bandwidth bottlenecks of data transfer over PCIe, common in GPU and accelerator solutions. Knights Landing will include up to 16GB high-bandwidth, on-package memory at launch – designed in partnership with Micron* – to deliver five times better bandwidth compared to DDR4 memory1, five times better energy efficiency2 and three times more density2 than current GDDR-based memory. When combined with integrated Intel Omni Scale Fabric, the new memory solution will allow Knights Landing to be installed as an independent compute building block, saving space and energy by reducing the number of components.

Powered by more than 60 HPC-enhanced Silvermont architecture-based cores, Knights Landing is expected to deliver more than 3 TFLOPS of double-precision performance3 and three times the single-threaded performance4 compared with the current generation. As a standalone server processor, Knights Landing will support DDR4 system memory comparable in capacity and bandwidth to Intel Xeon processor-based platforms, enabling applications that have a much larger memory footprint. Knights Landing will be binary-compatible with Intel Xeon processors5, making it easy for software developers to reuse the wealth of existing code.

For customers preferring discrete components and a fast upgrade path without needing to upgrade other system components, both Knights Landing and Intel Omni Scale Fabric controllers will be available as separate PCIe-based add-on cards. There is application compatibility between currently available Intel® True Scale Fabric and future Intel Omni Scale Fabric, so customers can transition to new fabric technology without change to their applications. For customers purchasing Intel True Scale Fabric today, Intel will offer a program to upgrade to Intel Omni Scale Fabric when it’s available.

Knights Landing processors are scheduled to power HPC systems in the second half of 2015. For instance, in April the National Energy Research Scientific Computing Center (NERSC) announced an HPC installation planned for 2016, serving more than 5,000 users and over 700 extreme-scale science projects.

“We are excited about our partnership with Cray and Intel to develop NERSC's next supercomputer ‘Cori,’” said Dr. Sudip Dosanjh, NERSC Director, Lawrence Berkeley National Laboratory. “Cori will consist of over 9,300 Intel Knights Landing processors and will serve as an on-ramp to exascale for our users through an accessible programming model. Our codes, which are often memory-bandwidth limited, will also greatly benefit from Knights Landing's high speed on package memory. We look forward to enabling new science that cannot be done on today's supercomputers.”

New Fabric, New Speeds with Intel Omni Scale Fabric

Intel Omni Scale fabric is built upon a combination of enhanced acquired IP from Cray and QLogic, and Intel’s own in-house innovations. It will include a full product line offering consisting of adapters, edge switches, director switch systems, and open-source fabric management and software tools. Additionally, traditional electrical transceivers in the director switches in today’s fabrics will be replaced by Intel® Silicon Photonics-based solutions, enabling increased port density, simplified cabling and reduced costs6. Intel Silicon Photonics-based cabling and transceiver solutions may also be used with Intel Omni Scale-based processors, adapter cards and edge switches.

Intel Supercomputing Momentum Continues

The current generation of Intel Xeon processors and Intel Xeon Phi coprocessors powers the top-rated system in the world – the 35 PFLOPS “Milky Way 2” in China. Intel Xeon Phi coprocessors are also available in more than 200 OEM designs worldwide.

Intel-based systems account for 85 percent of all supercomputers on the 43rd edition of the TOP500 list announced today and 97 percent of all new additions. Within 18 months after the introduction of Intel’s first many-core architecture products, Intel Xeon Phi coprocessor-based systems already make up 18 percent of the aggregated performance of all TOP500 supercomputers. The complete TOP500 list is available at www.top500.org.

To help optimize applications for many-core processing, Intel has also established more than 30 Intel Parallel Computing Centers (IPCC) in cooperation with universities and research facilities around the world. Today’s parallel optimization investment with the Intel Xeon Phi coprocessor will carry forward to Knights Landing, as optimizations using standards-based, common programming languages persist with a recompile. Incremental tuning gains will be available to take advantage of innovative new functionality.

About Intel

Intel (NASDAQ: INTC) is a world leader in computing innovation. The company designs and builds the essential technologies that serve as the foundation for the world’s computing devices. As a leader in corporate responsibility and sustainability, Intel also manufactures the world’s first commercially available “conflict-free” microprocessors. Additional information about Intel is available at newsroom.intel.com and blogs.intel.com, and about Intel’s conflict-free efforts at conflictfree.intel.com.

Copyright © 2014, Intel Corporation

Intel, Xeon, Intel Xeon Phi, Intel Atom and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

*Other brands and names may be claimed as the property of others.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Results have been measured by Intel based on software, benchmark or other data of third parties and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. Intel does not control or audit the design or implementation of third party data referenced in this document. Intel encourages all of its customers to visit the websites of the referenced third parties or other sources to confirm whether the referenced data is accurate and reflects performance of systems available for purchase”

1 Projected result based on internal Intel analysis of STREAM benchmark using a Knights Landing processor with 16GB of high-bandwidth versus DDR4 memory only with all channels populated

2 Projected results based on internal Intel analysis of Knights Landing’s on-package memory MCDRAM vs Knights Corner’s GDDR5 memory

3 Internal and preliminary projections of theoretical double-precision performance measured by Linpack. Based on current expectations of Knights Landing’s cores, clock frequency and floating point operations per cycle.

4. Projected peak theoretical single-thread performance relative to 1st Generation Intel® Xeon Phi™ Coprocessor 7120P (formerly code-named Knights Corner)

5 Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX - Transactional Synchronization Extensions)

6 The TCO or other cost reduction scenarios described in this document are intended to enable you to get a better understanding of how the purchase of a given Intel product, combined with a number of situation-specific variables, might affect your future cost and savings. Circumstances will vary and there may be unaccounted-for costs related to the use and deployment of a given product. Nothing in this document should be interpreted as either a promise of or contract for a given level of costs.”

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Discover top technologies and tools all under one roof at April 24–28, 2017, at the Westin San Diego in San Diego, CA. Explore the Mobile Dev + Test and IoT Dev + Test Expo and enjoy all of these unique opportunities: The latest solutions, technologies, and tools in mobile or IoT software development and testing. Meet one-on-one with representatives from some of today's most innovative organizations
SYS-CON Events announced today that Dataloop.IO, an innovator in cloud IT-monitoring whose products help organizations save time and money, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Dataloop.IO is an emerging software company on the cutting edge of major IT-infrastructure trends including cloud computing and microservices. The company, founded in the UK but now based in San Fran...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in Embedded and IoT solutions, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 7-9, 2017, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and E...
SYS-CON Events announced today that Linux Academy, the foremost online Linux and cloud training platform and community, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Linux Academy was founded on the belief that providing high-quality, in-depth training should be available at an affordable price. Industry leaders in quality training, provided services, and student certification passes, its goal is to c...
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
The unique combination of Amazon Web Services and Cloud Raxak, a Gartner Cool Vendor in IT Automation, provides a seamless and cost-effective way of securely moving on-premise IT workloads to Amazon Web Services. Any enterprise can now leverage the cloud, manage risk, and maintain continuous security compliance. Forrester's analysis shows that enterprises need automated security to lower security risk and decrease IT operational costs. Through the seamless integration into Amazon Web Services, ...
Due of the rise of Hadoop, many enterprises are now deploying their first small clusters of 10 to 20 servers. At this small scale, the complexity of operating the cluster looks and feels like general data center servers. It is not until the clusters scale, as they inevitably do, when the pain caused by the exponential complexity becomes apparent. We've seen this problem occur time and time again. In his session at Big Data Expo, Greg Bruno, Vice President of Engineering and co-founder of StackIQ...
When you focus on a journey from up-close, you look at your own technical and cultural history and how you changed it for the benefit of the customer. This was our starting point: too many integration issues, 13 SWP days and very long cycles. It was evident that in this fast-paced industry we could no longer afford this reality. We needed something that would take us beyond reducing the development lifecycles, CI and Agile methodologies. We made a fundamental difference, even changed our culture...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and containers together help companies achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of Dev...
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
WebRTC sits at the intersection between VoIP and the Web. As such, it poses some interesting challenges for those developing services on top of it, but also for those who need to test and monitor these services. In his session at WebRTC Summit, Tsahi Levent-Levi, co-founder of testRTC, reviewed the various challenges posed by WebRTC when it comes to testing and monitoring and on ways to overcome them.
"A lot of times people will come to us and have a very diverse set of requirements or very customized need and we'll help them to implement it in a fashion that you can't just buy off of the shelf," explained Nick Rose, CTO of Enzu, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Every successful software product evolves from an idea to an enterprise system. Notably, the same way is passed by the product owner's company. In his session at 20th Cloud Expo, Oleg Lola, CEO of MobiDev, will provide a generalized overview of the evolution of a software product, the product owner, the needs that arise at various stages of this process, and the value brought by a software development partner to the product owner as a response to these needs.
SYS-CON Events announced today that Enzu will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY, and the 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive ad...