Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, Cloud Security

@CloudExpo: Article

Real-Time Fraud Detection in the Cloud

Using machine learning agent ensembles

This article explores how to detect fraud among online banking customers in real-time by running an ensemble of statistical and machine learning algorithms on a dataset of customer transactions and demographic data. The algorithms, namely Logistic Regression, Self-Organizing Maps and Support Vector Machines, are operationalized using a multi-agent framework for real-time data analysis. This article also explores the cloud environment for real-time analytics by deploying the agent framework in a cloud environment that meets computational demands by letting users' provision virtual machines within managed data centers, freeing them from the worry of acquiring and setting up new hardware and networks.

Real-time decision making is becoming increasingly valuable with the advancement of data collection and analytics techniques. Due to the increase in the speed of processing, the classical data warehousing model is moving toward a real-time model. A platform that enables the rapid development and deployment of applications, reducing the lag between data acquisition and actionable insight has become of paramount importance in the corporate world. Such a system can be used for the classic case of deriving information from data collected in the past and also to have a real-time engine that reacts to events as they occur. Some examples of such applications include:

  • A product company can get real-time feedback for their new releases using data from social media
  • Algorithmic trading by reacting in real times to fluctuations in stock prices
  • Real-time recommendations for food and entertainment based on a customer's location
  • Traffic signal operations based on real-time information of volume of traffic
  • E-commerce websites can detect a customer transaction being authentic or fraudulent in real-time

A cloud-based ecosystem enables users to build an application that detects, in real-time, fraudulent customers based on their demographic information and financial history. Multiple algorithms are utilized to detect fraud and the output is aggregated to improve prediction accuracy.

The dataset used to demonstrate this application comprises of various customer demographic variables and financial information such as age, residential address, office address, income type, income frequency, bankruptcy filing status, etc. The dependent variable (the variable to be predicted) is called "bad", which is a binary variable taking the value 0 (for not fraud) or 1 (for fraud).

Using Cloud for Effective Usage of Resources
A system that allows the development of applications capable of churning out results in real-time has multiple services running in tandem and is highly resource intensive. By deploying the system in the cloud, maintenance and load balancing of the system can be handled efficiently. It will also give the user more time to focus on application development. For the purpose of fraud detection, the active components, for example, include:

  • ActiveMQ
  • Web services
  • PostgreSQL

This approach combines the strengths and synergies of both cloud computing and machine learning technologies, providing a small company or even a startup that is unlikely to have specialized staff and necessary infrastructure for what is a computationally intensive approach, the ability to build a system that make decisions based on historical transactions.

Agent Paradigm
As multiple algorithms are to be run on the same data, a real-time agent paradigm is chosen to run these algorithms. An agent is an autonomous entity that may expect inputs and send outputs after performing a set of instructions. In a real-time system, these agents are wired together with directed connections to form an agency. An agent typically has two behaviors, cyclic and triggered. Cyclic agents, as the name suggests, run continuously in a loop and do not need any input. These are usually the first agents in an agency and are used for streaming data to the agency by connecting to an external real-time data source. A triggered agent runs every time it receives a message from a cyclic agent or another triggered agent. Once it consumes one message, it waits for the next message to arrive.

Figure 1: A simple agency with two agents

In Figure 1, Agent 1 is a cyclic agent while Agent 2 is a triggered agent. Agent 1 finishes its computation and sends a message to Agent 2, which uses the message as an input for further computation.

Feature Selection and Data Treatment
The dataset used for demonstrating fraud detection agency has 250 variables (features) pertaining to the demographic and financial history of the customers. To reduce the number of features, a Random Forest run was conducted on the dataset to obtain variable importance. Next, the top 30 variables were selected based on the variable importance. This reduced dataset was used for running a list of classification algorithms.

Algorithms for Fraud Detection
The fraud detection problem is a binary classification problem for which we have chosen three different algorithms to classify the input data into fraud (1) and not fraud (0). Each algorithm is configured as a triggered agent for our real-time system.

Logistic Regression
This is a probabilistic classification model where the dependent variable (the variable to be predicted) is a binary variable or a categorical variable. In case of binary dependent variables favorable outcomes are represented as 1 and non-favorable outcomes are represented as 0. Logistic regression models the probability of the dependent variable taking the value 0 or 1.

For the fraud detection problem, the dependent variable "bad" is modelled to give probabilities to each customer of being fraud or not. The equation takes multiple variables as input and returns a value between 0 & 1 which is the probability of "bad" being 0. If this value is greater than 0.7, then that customer is classified as not fraud.

Self-Organizing Maps (SOM)
This is an artificial neural network that uses unsupervised learning to represent the data in lower (typically two dimensions) dimensions. This representation of the input data in lower dimensions is called a map. Like most artificial neural networks, SOMs operate in two modes: training and mapping. "Training" builds the map using input examples, while "mapping" automatically classifies a new input vector.

For the fraud detection problem, the input space which is a fifty dimensional space is mapped to a two dimensional lattice of nodes. The training is done using data from the recent past and the new data is mapped using the trained model, which puts it either in the "fraud" cluster or "not - fraud" cluster.

Figure 2: x is an in-put vector in higher dimension, discretized in 2D using wij as the weight matrix
Image Source: http://www.lohninger.com/helpcsuite/kohonen_network_-_background_information.htm

Support Vector Machines (SVM)
This is a supervised learning technique used generally for classifying data. It needs a training dataset where the data is already classified into the required categories. It creates a hyperplane or set of hyperplanes that can be used for classification. The hyperplane is chosen such that it separates the different classes and the margin between the samples in the training set is widest.

For the fraud detection problem, SVM classifies the data points into two classes. The hyperplane is chosen by training the model over the past data. Using the variable "bad", the clusters are labeled as "0" (fraud) and "1" (not fraud). The new data points are classified using the hyperplane obtained while training.

Figure 3: Of the three hyperplanes which segment the data, H2 is the hyperplane which classifies the data accurately

Image Source: http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png

Fraud Detection Agency
A four-tier agency is created to build a workflow process for fraud detection.

Streamer Agent (Tier 1): This agent streams data in real-time to agents in Tier 2. It is the first agent in the agency and its behavior is cyclic. It connects to a real-time data source, pre-processes the data and sends it to the agents in the next layer.

Algorithm Agents (Tier 2): This tier has multiple agents running an ensemble of algorithms with one agent per algorithm. Each agent receives the message from the streamer agent and uses a pre-trained (trained on historical data) model for scoring.

Collator Agent (Tier 3): This agent receives scores from agents in Tier 2 and generates a single score by aggregating the scores. It then converts the score into an appropriate JSON format and sends it to an UI agent for consumption.

User Interface Agent (Tier 4): This agent pushes the messages it receives to a socket server. Any external socket client can be used to consume these messages.

Figure 4: The Fraud detection agency with agents in each layer. The final agent is mapped to a port to which a socket client can connect

Results and Model Validation
The models were trained on 70% of the data and the remaining 30% of the data was streamed to the above agency simulating a real-time data source.

Under-sample: The ratio of number of 0s to the number of 1s in the original dataset for the variable "bad" is 20:1. This would lead to biasing the models towards 0. To overcome this, we sample the training dataset by under-sampling the number of 0s to maintain the ration at 10:1.

The final output of the agency is the classification of the input as fraudulent or not. Since the value for the variable "bad" is already known for this data, it helps us gauge the accuracy of the aggregated model.

Figure 5: Accuracy for detecting fraud ("bad"=1) for different sampling ratio between no.of 0s and no. of 1s in the training dataset

Fraud detection can be improved by running an ensemble of algorithms in parallel and aggregating the predictions in real-time. This entire end-to-end application was designed and deployed in three working days. This shows the power of a system that enables easy deployment of real-time analytics applications. The work flow becomes inherently parallel as these agents run as separate processes communicating with each other. Deploying this in the cloud makes it horizontally scalable owing to effective load balancing and hardware maintenance. It also provides higher data security and makes the system fault tolerant by making processes mobile. This combination of a real-time application development system and a cloud-based computing enables even non-technical teams to rapidly deploy applications.


  • Gravic Inc, "The Evolution of Real-Time Business Intelligence", "http://www.gravic.com/shadowbase/pdf/white-papers/Shadowbase-for-Real-Time-Business-Intelligence.pdf"
  • Bernhard Schlkopf, Alexander J. Smola ( 2002), "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning)", MIT Press​
  • Christopher Burges (1998), "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Kluwer Publishers
  • Kohonen, T. (Sep 1990), "The self-organizing map", Proceedings of IEEE
  • Rokach, L. (2010). "Ensemble based classifiers". Artificial Intelligence Review
  • Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, "Variable Selection using Random Forests", http://robin.genuer.fr/genuer-poggi-tuleau.varselect-rf.preprint.pdf

More Stories By Roger Barga

Roger Barga, PhD, is Group Program Manager for the CloudML team at Microsoft Corporation where his team is building machine learning as a service on the cloud. He is also a lecturer in the Data Science program at the University of Washington. Roger joined Microsoft in 1997 as a Researcher in the Database Group of Microsoft Research (MSR), where he was involved in a number of systems research projects and product incubation efforts, before joining the Cloud and Enterprise Division of Microsoft in 2011.

More Stories By Avinash Joshi

Avinash Joshi is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that works on generating insights from real-time data streams in financial markets. Avinash joined this team in 2011 and has interests ranging from marketing mix modeling to algorithmic trading.

More Stories By Pravin Venugopal

Pravin Venugopal is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that is developing a low latency platform for algorithmic trading. Pravin received his Masters degree in Computer Science and has been a part of Mu Sigma since 2012. His interests include analyzing real-time financial data streams and algorithmic trading.

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

Latest Stories
Enterprise architects are increasingly adopting multi-cloud strategies as they seek to utilize existing data center assets, leverage the advantages of cloud computing and avoid cloud vendor lock-in. This requires a globally aware traffic management strategy that can monitor infrastructure health across data centers and end-user experience globally, while responding to control changes and system specification at the speed of today’s DevOps teams. In his session at 20th Cloud Expo, Josh Gray, Chie...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, shared examples from a wide range of industries – including en...
In IT, we sometimes coin terms for things before we know exactly what they are and how they’ll be used. The resulting terms may capture a common set of aspirations and goals – as “cloud” did broadly for on-demand, self-service, and flexible computing. But such a term can also lump together diverse and even competing practices, technologies, and priorities to the point where important distinctions are glossed over and lost.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. Jack Norris reviews best practices to show how companies develop, deploy, and dynamically update these applications and how this data-first...
Intelligent Automation is now one of the key business imperatives for CIOs and CISOs impacting all areas of business today. In his session at 21st Cloud Expo, Brian Boeggeman, VP Alliances & Partnerships at Ayehu, will talk about how business value is created and delivered through intelligent automation to today’s enterprises. The open ecosystem platform approach toward Intelligent Automation that Ayehu delivers to the market is core to enabling the creation of the self-driving enterprise.
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"We're here to tell the world about our cloud-scale infrastructure that we have at Juniper combined with the world-class security that we put into the cloud," explained Lisa Guess, VP of Systems Engineering at Juniper Networks, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
In his session at 20th Cloud Expo, Mike Johnston, an infrastructure engineer at Supergiant.io, discussed how to use Kubernetes to set up a SaaS infrastructure for your business. Mike Johnston is an infrastructure engineer at Supergiant.io with over 12 years of experience designing, deploying, and maintaining server and workstation infrastructure at all scales. He has experience with brick and mortar data centers as well as cloud providers like Digital Ocean, Amazon Web Services, and Rackspace. H...
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
Consumers increasingly expect their electronic "things" to be connected to smart phones, tablets and the Internet. When that thing happens to be a medical device, the risks and benefits of connectivity must be carefully weighed. Once the decision is made that connecting the device is beneficial, medical device manufacturers must design their products to maintain patient safety and prevent compromised personal health information in the face of cybersecurity threats. In his session at @ThingsExpo...
SYS-CON Events announced today that Grape Up will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company specializing in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market across the U.S. and Europe, Grape Up works with a variety of customers from emergi...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
SYS-CON Events announced today that Massive Networks will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Massive Networks mission is simple. To help your business operate seamlessly with fast, reliable, and secure internet and network solutions. Improve your customer's experience with outstanding connections to your cloud.