Welcome!

News Feed Item

Packing Hundreds of Sensors into a Single Optical Fiber for use in Harsh Environments

By fusing together the concepts of active fiber sensors and high-temperature fiber sensors, a team of researchers at the University of Pittsburgh has created an all-optical high-temperature sensor for gas flow measurements that operates at record-setting temperatures above 800 degrees Celsius.

This technology is expected to find industrial sensing applications in harsh environments ranging from deep geothermal drill cores to the interiors of nuclear reactors to the cold vacuum of space missions, and it may eventually be extended to many others.

The team describes their all-optical approach in a paper published today in The Optical Society’s (OSA) journal Optics Letters. They successfully demonstrated simultaneous flow/temperature sensors at 850 C, which is a 200 C improvement on an earlier notable demonstration of MEMS-based sensors by researchers at Oak Ridge National Laboratory.

The basic concept of the new approach involves integrating optical heating elements, optical sensors, an energy delivery cable and a signal cable within a single optical fiber. Optical power delivered by the fiber is used to supply energy to the heating element, while the optical sensor within the same fiber measures the heat transfer from the heating element and transmits it back.

“We call it a 'smart optical fiber sensor powered by in-fiber light',” said Kevin P. Chen, an associate professor and the Paul E. Lego Faculty Fellow in the University of Pittsburg’s Department of Electrical and Computer Engineering.

The team’s work expands the use of fiber-optic sensors well beyond traditional applications of temperature and strain measurements. “Tapping into the energy carried by the optical fiber enables fiber sensors capable of performing much more sophisticated and multifunctional types of measurements that previously were only achievable using electronic sensors,” Chen said.

In microgravity situations, for example, it’s difficult to measure the level of liquid hydrogen fuel in tanks because it doesn’t settle at the bottom of the tank. It’s a challenge that requires the use of many electronic sensors—a problem Chen initially noticed years ago while visiting NASA, which was the original inspiration to develop a more streamlined and efficient approach.

“For this type of microgravity situation, each sensor requires wires, a.k.a. ‘leads,’ to deliver a sensing signal, along with a shared ground wire,” explained Chen. “So it means that many leads—often more than 40—are necessary to get measurements from the numerous sensors. I couldn’t help thinking there must be a better way to do it.”

It turned out, there is. The team looked to optical-fiber sensors, which are one of the best sensor technologies for use in harsh environments thanks to their extraordinary multiplexing capabilities and immunity to electromagnetic interference. And they were able to pack many of these sensors into a single fiber to reduce or eliminate the wiring problems associated with having numerous leads involved.

“Another big challenge we addressed was how to achieve active measurements in fiber,” Chen said. “If you study optical fiber, it’s a cable for signal transmission but one that can also be used for energy delivery—the same optical fiber can deliver both signal and optical power for active measurements. It drastically improves the sensitivity, functionality, and agility of fiber sensors without compromising the intrinsic advantages of fiber-optic sensors. That’s the essence of our work.”

Based on the same technology, highly sensitive chemical sensors can also be developed for cryogenic environments. “The optical energy in-fiber can be tapped to locally heated in-fiber chemical sensors to enhance its sensitivity,” Chen said. “In-fiber optical power can also be converted into ultrasonic energy, microwave or other interesting applications because tens or hundreds of smart sensors can be multiplexed within a single fiber. It just requires placing one fiber in the gas flow stream—even in locations with strong magnetic interference.”

Next, the team plans to explore common engineering devices that are often taken for granted and search for ways to enhance them. “For fiber sensors, we typically view the fiber as a signal-carrying cable. But if you look at it from a fiber sensor perspective, does it really need to be round or a specific size? Is it possible that another size or shape might better suit particular applications? As a superior optical cable, is it also possible to carry other types of energy along the fibers for long-distance and remote sensing?” Chen noted. “These are questions we’ll address.”

Paper: “Fiber-optic flow sensors for high-temperature-environment operation up to 800°C,” R. Chen at al., Optics Letters, Vol. 39, Issue 13, pp. 3966-3969 (2014).

EDITOR’S NOTE: An artist’s rendering of the sensor is available to members of the media upon request. Contact Angela Stark, [email protected].

About Optics Letters

Published by The Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Xi-Cheng Zhang of the University of Rochester and published twice each month, is where readers look for the latest discoveries in optics. Visit www.OpticsInfoBase.org/OL.

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in optics and photonics. For more information, visit www.osa.org.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Intelligent Automation is now one of the key business imperatives for CIOs and CISOs impacting all areas of business today. In his session at 21st Cloud Expo, Brian Boeggeman, VP Alliances & Partnerships at Ayehu, will talk about how business value is created and delivered through intelligent automation to today’s enterprises. The open ecosystem platform approach toward Intelligent Automation that Ayehu delivers to the market is core to enabling the creation of the self-driving enterprise.
"At the keynote this morning we spoke about the value proposition of Nutanix, of having a DevOps culture and a mindset, and the business outcomes of achieving agility and scale, which everybody here is trying to accomplish," noted Mark Lavi, DevOps Solution Architect at Nutanix, in this SYS-CON.tv interview at @DevOpsSummit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"We're here to tell the world about our cloud-scale infrastructure that we have at Juniper combined with the world-class security that we put into the cloud," explained Lisa Guess, VP of Systems Engineering at Juniper Networks, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Historically, some banking activities such as trading have been relying heavily on analytics and cutting edge algorithmic tools. The coming of age of powerful data analytics solutions combined with the development of intelligent algorithms have created new opportunities for financial institutions. In his session at 20th Cloud Expo, Sebastien Meunier, Head of Digital for North America at Chappuis Halder & Co., discussed how these tools can be leveraged to develop a lasting competitive advantage ...
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
In his session at 20th Cloud Expo, Mike Johnston, an infrastructure engineer at Supergiant.io, discussed how to use Kubernetes to set up a SaaS infrastructure for your business. Mike Johnston is an infrastructure engineer at Supergiant.io with over 12 years of experience designing, deploying, and maintaining server and workstation infrastructure at all scales. He has experience with brick and mortar data centers as well as cloud providers like Digital Ocean, Amazon Web Services, and Rackspace. H...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes a lot of work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reduction in cost ...
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, will provide a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to ...
Consumers increasingly expect their electronic "things" to be connected to smart phones, tablets and the Internet. When that thing happens to be a medical device, the risks and benefits of connectivity must be carefully weighed. Once the decision is made that connecting the device is beneficial, medical device manufacturers must design their products to maintain patient safety and prevent compromised personal health information in the face of cybersecurity threats. In his session at @ThingsExpo...
SYS-CON Events announced today that Massive Networks will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Massive Networks mission is simple. To help your business operate seamlessly with fast, reliable, and secure internet and network solutions. Improve your customer's experience with outstanding connections to your cloud.
From 2013, NTT Communications has been providing cPaaS service, SkyWay. Its customer’s expectations for leveraging WebRTC technology are not only typical real-time communication use cases such as Web conference, remote education, but also IoT use cases such as remote camera monitoring, smart-glass, and robotic. Because of this, NTT Communications has numerous IoT business use-cases that its customers are developing on top of PaaS. WebRTC will lead IoT businesses to be more innovative and address...