Welcome!

Related Topics: @ThingsExpo, Java IoT, Linux Containers, @CloudExpo, @DXWorldExpo, @DevOpsSummit

@ThingsExpo: Blog Post

Cloud, Internet of Things and Big Operational Data | @ThingsExpo [#IoT]

The Internet of Things is only going to make that even more challenging as businesses turn to new business models and services

Cloud and Things and Big Operational Data

Software-defined architectures are critical for achieving the right mix of efficiency and scale needed to meet the challenges that will come with the Internet of Things

If you've been living under a rock (or rack in the data center) you might not have noticed the explosive growth of technologies and architectures designed to address emerging challenges with scaling data centers. Whether considering the operational aspects (devops) or technical components (SDN, SDDC, Cloud), software-defined architectures are the future enabler of business, fueled by the increasing demand for applications.

The Internet of Things is only going to make that even more challenging as businesses turn to new business models and services fueled by a converging digital-physical world. Applications, whether focused on licensing, provisioning, managing or storing data for these "things" will increase the already significant burden on IT as a whole. The inability to scale from an operational perspective is really what software-defined architectures are attempting to solve by operationalizing the network to shift the burden of provisioning and management from people to technology.

But it's more than just API-enabling switches, routers, ADCs and other infrastructure components. While this is a necessary capability to ensure the operational scalability of modern data centers, what's really necessary to achieve the next "level" is collaboration.

That means infrastructure integration.

it is one thing to be able to automatically provision the network, compute and storage resources necessary to scale to meet the availability and performance expectations of users and businesses alike. But that's the last step in the process. Actually performing the provisioning is the action that's taken after it's determined not only that it's necessary, but where it's necessary.

Workloads (and I hate that term but it's at least somewhat universally understood so I'll acquiesce to using it for now) have varying characteristics with respect to the compute, network and storage they require to perform optimally. That's means provisioning a "workload" in a VM with characteristics that do not match the requirements is necessarily going to impact its performance or load capability. If one is making assumptions regarding the number of users a given application can support, and it's provisioned with a resource profile that impacts that support, it can lead to degrading performance or availability.

What that means is the systems responsible for provisioning "workloads" must be able to match resource requirements with the workload, as well as understand current (and predicted) demand in terms of users, connections and network consumption rates.

Data, is the key. Measurements of performance, rates of queries, number of users, and the resulting impact on the workload must be captured. But more than that, it must be shared with the systems responsible for provisioning and scaling the workloads.

Location Matters

This is not a new concept, that we should be able to share data across systems and services to ensure the best fit for provisioning and seamless scale demanded of modern architectures. A 2007 SIGMOD paper, "Automated and On-Demand Provisioning of Virtual Machines for Database Applications" as well as a 2010 IEEE paper, "Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center" discuss the need for such provisioning models and the resulting architectures rely heavily on the collaboration of the data center components responsible for measuring, managing and provisioning workloads in cloud computing environments through integration.

The location of a workload, you see, matters. Not location as in "on-premise" or "off-premise", though that certainly has an impact, but the location within the data center matters to the overall performance and scale of the applications composed from those workloads. The location of a specific workload comparative to other components impacts availability and traffic patterns that can result in higher incidents of north-south or east-west congestion in the network. Location of application workloads can cause hairpinning (or tromboning if you prefer) of traffic that may degrade performance or introduce variable latency that degrades the quality of video or audio content.

Location matters a great deal, and yet the very premise of cloud is to abstract topology (location) from the equation and remove it from consideration as part of the provisioning process.

Early in the life of public cloud there was concern over not knowing "who your neighbor tenant" might be on a given physical server, because there was little transparency into the decision making process that governs provisioning of instances in public cloud environments. The depth of such decisions appeared to - and still appear to - be made based on your preference for the "size" of an instance. Obviously, Amazon or Azure or Google is not going to provision a "large" instance where only a "small" will fit.

But the question of where, topologically, that "large" instance might end up residing is still unanswered. It might be two hops away or one virtual hop away. You can't know if your entire application - all its components - have been launched on the same physical server or not. And that can have dire consequences in a model that's "built to fail" because if all your eggs are in one basket and the basket breaks... well, minutes of downtime is still downtime.

The next evolutionary step in cloud (besides the emergence of much needed value added services) is more intelligent provisioning driven by better feedback loops regarding the relationship between the combination of compute, network and storage resources and the application. Big (Operational) Data is going to be as important to IT as Big (Customer) Data is to the business as more and more applications and services become critical to the business.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

Latest Stories
Jo Peterson is VP of Cloud Services for Clarify360, a boutique sourcing and benchmarking consultancy focused on transforming technology into business advantage. Clarify360 provides custom, end-to-end solutions from a portfolio of more than 170 suppliers globally. As an engineer, Jo sources net new technology footprints, and is an expert at optimizing and benchmarking existing environments focusing on Cloud Enablement and Optimization. She and her team work with clients on Cloud Discovery, Cloud ...
Founded in 2000, Chetu Inc. is a global provider of customized software development solutions and IT staff augmentation services for software technology providers. By providing clients with unparalleled niche technology expertise and industry experience, Chetu has become the premiere long-term, back-end software development partner for start-ups, SMBs, and Fortune 500 companies. Chetu is headquartered in Plantation, Florida, with thirteen offices throughout the U.S. and abroad.
Everyone wants the rainbow - reduced IT costs, scalability, continuity, flexibility, manageability, and innovation. But in order to get to that collaboration rainbow, you need the cloud! In this presentation, we'll cover three areas: First - the rainbow of benefits from cloud collaboration. There are many different reasons why more and more companies and institutions are moving to the cloud. Benefits include: cost savings (reducing on-prem infrastructure, reducing data center foot print, redu...
The technologies behind big data and cloud computing are converging quickly, offering businesses new capabilities for fast, easy, wide-ranging access to data. However, to capitalize on the cost-efficiencies and time-to-value opportunities of analytics in the cloud, big data and cloud technologies must be integrated and managed properly. Pythian's Director of Big Data and Data Science, Danil Zburivsky will explore: The main technology components and best practices being deployed to take advantage...
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
Most DevOps journeys involve several phases of maturity. Research shows that the inflection point where organizations begin to see maximum value is when they implement tight integration deploying their code to their infrastructure. Success at this level is the last barrier to at-will deployment. Storage, for instance, is more capable than where we read and write data. In his session at @DevOpsSummit at 20th Cloud Expo, Josh Atwell, a Developer Advocate for NetApp, will discuss the role and value...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busi...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists examined how DevOps helps to meet the de...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
"When you think about the data center today, there's constant evolution, The evolution of the data center and the needs of the consumer of technology change, and they change constantly," stated Matt Kalmenson, VP of Sales, Service and Cloud Providers at Veeam Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Today, we have more data to manage than ever. We also have better algorithms that help us access our data faster. Cloud is the driving force behind many of the data warehouse advancements we have enjoyed in recent years. But what are the best practices for storing data in the cloud for machine learning and data science applications?
Andi Mann, Chief Technology Advocate at Splunk, is an accomplished digital business executive with extensive global expertise as a strategist, technologist, innovator, marketer, and communicator. For over 30 years across five continents, he has built success with Fortune 500 corporations, vendors, governments, and as a leading research analyst and consultant.
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science" is responsible for guiding the technology strategy within Hitachi Vantara for IoT and Analytics. Bill brings a balanced business-technology approach that focuses on business outcomes to drive data, analytics and technology decisions that underpin an organization's digital transformation strategy.