Welcome!

News Feed Item

Rivada Networks Releases Full Text of Location-Based Services Patent

The U.S. Patent and Trademark Office today issued patent #8,787,944, Method and System for Providing Enhanced Location Based Information for Wireless Handsets, to Rivada Networks. As previously announced, Rivada’s latest patent allows nearby mobile devices to triangulate off each other, taking advantage of modern devices’ accelerometers and other means to determine relative location and movement, independent of the availability of a device’s main network. According to Rivada CTO Clint Smith, “This breakthrough technology could be implemented as an application on many existing mobile devices.”

Here follows the full text of the patent’s 39 claims:

1. A method of determining a location of a mobile device, comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving on the mobile device location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

2. The method of claim 1, wherein:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device location information from the plurality of wireless transceivers in the communication group.

3. The method of claim 1, wherein grouping the mobile device with a wireless transceiver in proximity to the mobile device comprises grouping the mobile device with a second mobile device.

4. The method of claim 1, wherein receiving location information on the mobile device from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

5. The method of claim 1, further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information on the mobile device from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

6. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

7. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

8. The method of claim 1, further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

9. The method of claim 1, wherein:

the mobile device is connected to a first telecommunication network and the wireless transceiver is connected to a second telecommunication network; and

sending the determined approximate location of the mobile device to the wireless transceiver comprises the mobile device establishing a near field communication link to the wireless transceiver and the mobile device sending the determined approximate location of the mobile device to the wireless transceiver over the established near field communication link.

10. The method of claim 1, wherein receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device sensor information collected from a sensor of the wireless transceiver.

11. The method of claim 10, wherein receiving on the mobile device sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

12. The method of claim 1, wherein determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

13. The method of claim 12, wherein determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

14. A mobile device, comprising:

a memory; and

a processor coupled to the memory, wherein the processor is configured with processor-executable instructions to perform operations comprising:

determining an approximate location of the mobile device;

grouping with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

15. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that:

grouping with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

16. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

17. (Original) The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

18. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

19. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

20. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

21. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

22. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the processor is configured with processor-executable instructions such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

23. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

24. The mobile device of claim 23, wherein the processor is configured with processor-executable instructions to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

25. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

26. The mobile device of claim 25, wherein the processor is configured with processor-executable instructions to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

27. A non-transitory computer readable storage medium having stored thereon processor-executable software instructions configured to cause a processor of a mobile device to perform operations comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

28. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

29. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

30. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

31. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

32. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

33. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

34. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

35. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the stored processor-executable software instructions are configured to cause a processor to perform operations such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

36. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

37. The non-transitory computer readable storage medium of claim 36, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

38. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

39. The non-transitory computer readable storage medium of claim 38, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

About Rivada Networks

Rivada Networks is a leading designer, integrator and operator of wireless, interoperable public safety communications networks. Rivada’s core technology, Dynamic Spectrum Arbitrage Tiered Priority Access (DSATPA), allows wireless broadband capacity to be dynamically bought and sold in a fully competitive “on demand” process to competing commercial entities. DSATPA is a game changer for the way in which spectrum is consumed, maximizing the efficiency of the radio spectrum bandwidth resource and unlocking the potential for more extensive high capacity broadband networks.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Automation is enabling enterprises to design, deploy, and manage more complex, hybrid cloud environments. Yet the people who manage these environments must be trained in and understanding these environments better than ever before. A new era of analytics and cognitive computing is adding intelligence, but also more complexity, to these cloud environments. How smart is your cloud? How smart should it be? In this power panel at 20th Cloud Expo, moderated by Conference Chair Roger Strukhoff, pane...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.
SYS-CON Events announced today that delaPlex will exhibit at SYS-CON's @ThingsExpo, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. delaPlex pioneered Software Development as a Service (SDaaS), which provides scalable resources to build, test, and deploy software. It’s a fast and more reliable way to develop a new product or expand your in-house team.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
SYS-CON Events announced today that Tintri, Inc, a leading provider of enterprise cloud infrastructure, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Tintri offers an enterprise cloud platform built with public cloud-like web services and RESTful APIs. Organizations use Tintri all-flash storage with scale-out and automation as a foundation for their own clouds – to build agile development environments...
SYS-CON Events announced today that DivvyCloud will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. DivvyCloud software enables organizations to achieve their cloud computing goals by simplifying and automating security, compliance and cost optimization of public and private cloud infrastructure. Using DivvyCloud, customers can leverage programmatic Bots to identify and remediate common cloud problems in rea...
SYS-CON Events announced today that Carbonite will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Carbonite protects your entire IT footprint with the right level of protection for each workload, ensuring lower costs and dependable solutions with DoubleTake and Evault.
SYS-CON Events announced today that Technologic Systems Inc., an embedded systems solutions company, will exhibit at SYS-CON's @ThingsExpo, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Technologic Systems is an embedded systems company with headquarters in Fountain Hills, Arizona. They have been in business for 32 years, helping more than 8,000 OEM customers and building over a hundred COTS products that have never been discontinued. Technologic Systems’ pr...
SYS-CON Events announced today that Tappest will exhibit MooseFS at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. MooseFS is a breakthrough concept in the storage industry. It allows you to secure stored data with either duplication or erasure coding using any server. The newest – 4.0 version of the software enables users to maintain the redundancy level with even 50% less hard drive space required. The software func...
SYS-CON Events announced today that EARP will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. "We are a software house, so we perfectly understand challenges that other software houses face in their projects. We can augment a team, that will work with the same standards and processes as our partners' internal teams. Our teams will deliver the same quality within the required time and budget just as our partn...
SYS-CON Events announced today that Cloudistics, an on-premises cloud computing company, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Cloudistics delivers a complete public cloud experience with composable on-premises infrastructures to medium and large enterprises. Its software-defined technology natively converges network, storage, compute, virtualization, and management into a ...
Cloud promises the agility required by today’s digital businesses. As organizations adopt cloud based infrastructures and services, their IT resources become increasingly dynamic and hybrid in nature. Managing these require modern IT operations and tools. In his session at 20th Cloud Expo, Raj Sundaram, Senior Principal Product Manager at CA Technologies, will discuss how to modernize your IT operations in order to proactively manage your hybrid cloud and IT environments. He will be sharing bes...
DevOps at Cloud Expo – being held October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real r...