Welcome!

News Feed Item

Rivada Networks Releases Full Text of Location-Based Services Patent

The U.S. Patent and Trademark Office today issued patent #8,787,944, Method and System for Providing Enhanced Location Based Information for Wireless Handsets, to Rivada Networks. As previously announced, Rivada’s latest patent allows nearby mobile devices to triangulate off each other, taking advantage of modern devices’ accelerometers and other means to determine relative location and movement, independent of the availability of a device’s main network. According to Rivada CTO Clint Smith, “This breakthrough technology could be implemented as an application on many existing mobile devices.”

Here follows the full text of the patent’s 39 claims:

1. A method of determining a location of a mobile device, comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving on the mobile device location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

2. The method of claim 1, wherein:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device location information from the plurality of wireless transceivers in the communication group.

3. The method of claim 1, wherein grouping the mobile device with a wireless transceiver in proximity to the mobile device comprises grouping the mobile device with a second mobile device.

4. The method of claim 1, wherein receiving location information on the mobile device from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

5. The method of claim 1, further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information on the mobile device from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

6. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

7. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

8. The method of claim 1, further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

9. The method of claim 1, wherein:

the mobile device is connected to a first telecommunication network and the wireless transceiver is connected to a second telecommunication network; and

sending the determined approximate location of the mobile device to the wireless transceiver comprises the mobile device establishing a near field communication link to the wireless transceiver and the mobile device sending the determined approximate location of the mobile device to the wireless transceiver over the established near field communication link.

10. The method of claim 1, wherein receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device sensor information collected from a sensor of the wireless transceiver.

11. The method of claim 10, wherein receiving on the mobile device sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

12. The method of claim 1, wherein determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

13. The method of claim 12, wherein determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

14. A mobile device, comprising:

a memory; and

a processor coupled to the memory, wherein the processor is configured with processor-executable instructions to perform operations comprising:

determining an approximate location of the mobile device;

grouping with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

15. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that:

grouping with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

16. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

17. (Original) The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

18. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

19. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

20. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

21. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

22. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the processor is configured with processor-executable instructions such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

23. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

24. The mobile device of claim 23, wherein the processor is configured with processor-executable instructions to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

25. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

26. The mobile device of claim 25, wherein the processor is configured with processor-executable instructions to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

27. A non-transitory computer readable storage medium having stored thereon processor-executable software instructions configured to cause a processor of a mobile device to perform operations comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

28. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

29. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

30. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

31. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

32. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

33. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

34. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

35. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the stored processor-executable software instructions are configured to cause a processor to perform operations such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

36. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

37. The non-transitory computer readable storage medium of claim 36, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

38. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

39. The non-transitory computer readable storage medium of claim 38, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

About Rivada Networks

Rivada Networks is a leading designer, integrator and operator of wireless, interoperable public safety communications networks. Rivada’s core technology, Dynamic Spectrum Arbitrage Tiered Priority Access (DSATPA), allows wireless broadband capacity to be dynamically bought and sold in a fully competitive “on demand” process to competing commercial entities. DSATPA is a game changer for the way in which spectrum is consumed, maximizing the efficiency of the radio spectrum bandwidth resource and unlocking the potential for more extensive high capacity broadband networks.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Is the ongoing quest for agility in the data center forcing you to evaluate how to be a part of infrastructure automation efforts? As organizations evolve toward bimodal IT operations, they are embracing new service delivery models and leveraging virtualization to increase infrastructure agility. Therefore, the network must evolve in parallel to become equally agile. Read this essential piece of Gartner research for recommendations on achieving greater agility.
SYS-CON Events announced today that Hitrons Solutions will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Hitrons Solutions Inc. is distributor in the North American market for unique products and services of small and medium-size businesses, including cloud services and solutions, SEO marketing platforms, and mobile applications.
Smart Cities are here to stay, but for their promise to be delivered, the data they produce must not be put in new siloes. In his session at @ThingsExpo, Mathias Herberts, Co-founder and CTO of Cityzen Data, will deep dive into best practices that will ensure a successful smart city journey.
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - comp...
Kubernetes, Docker and containers are changing the world, and how companies are deploying their software and running their infrastructure. With the shift in how applications are built and deployed, new challenges must be solved. In his session at @DevOpsSummit at19th Cloud Expo, Sebastian Scheele, co-founder of Loodse, will discuss the implications of containerized applications/infrastructures and their impact on the enterprise. In a real world example based on Kubernetes, he will show how to ...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
As the world moves toward more DevOps and Microservices, application deployment to the cloud ought to become a lot simpler. The Microservices architecture, which is the basis of many new age distributed systems such as OpenStack, NetFlix and so on, is at the heart of Cloud Foundry - a complete developer-oriented Platform as a Service (PaaS) that is IaaS agnostic and supports vCloud, OpenStack and AWS. Serverless computing is revolutionizing computing. In his session at 19th Cloud Expo, Raghav...
DevOps at Cloud Expo – being held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Am...
Fact: storage performance problems have only gotten more complicated, as applications not only have become largely virtualized, but also have moved to cloud-based infrastructures. Storage performance in virtualized environments isn’t just about IOPS anymore. Instead, you need to guarantee performance for individual VMs, helping applications maintain performance as the number of VMs continues to go up in real time. In his session at Cloud Expo, Dhiraj Sehgal, Product and Marketing at Tintri, wil...
Ixia (Nasdaq: XXIA) has announced that NoviFlow Inc.has deployed IxNetwork® to validate the company’s designs and accelerate the delivery of its proven, reliable products. Based in Montréal, NoviFlow Inc. supports network carriers, hyperscale data center operators, and enterprises seeking greater network control and flexibility, network scalability, and the capacity to handle extremely large numbers of flows, while maintaining maximum network performance. To meet these requirements, NoviFlow in...
StarNet Communications Corp has announced the addition of three Secure Remote Desktop modules to its flagship X-Win32 PC X server. The new modules enable X-Win32 to safely tunnel the remote desktops from Linux and Unix servers to the user’s PC over encrypted SSH. Traditionally, users of PC X servers deploy the XDMCP protocol to display remote desktop environments such as the Gnome and KDE desktops on Linux servers and the CDE environment on Solaris Unix machines. XDMCP is used primarily on comp...
SYS-CON Events announced today that StarNet Communications will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. StarNet Communications’ FastX is the industry first cloud-based remote X Windows emulator. Using standard Web browsers (FireFox, Chrome, Safari, etc.) users from around the world gain highly secure access to applications and data hosted on Linux-based servers in a central data center. ...
SYS-CON Events announced today Telecom Reseller has been named “Media Sponsor” of SYS-CON's 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.