Click here to close now.

Welcome!

News Feed Item

Rivada Networks Releases Full Text of Location-Based Services Patent

The U.S. Patent and Trademark Office today issued patent #8,787,944, Method and System for Providing Enhanced Location Based Information for Wireless Handsets, to Rivada Networks. As previously announced, Rivada’s latest patent allows nearby mobile devices to triangulate off each other, taking advantage of modern devices’ accelerometers and other means to determine relative location and movement, independent of the availability of a device’s main network. According to Rivada CTO Clint Smith, “This breakthrough technology could be implemented as an application on many existing mobile devices.”

Here follows the full text of the patent’s 39 claims:

1. A method of determining a location of a mobile device, comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving on the mobile device location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

2. The method of claim 1, wherein:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device location information from the plurality of wireless transceivers in the communication group.

3. The method of claim 1, wherein grouping the mobile device with a wireless transceiver in proximity to the mobile device comprises grouping the mobile device with a second mobile device.

4. The method of claim 1, wherein receiving location information on the mobile device from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

5. The method of claim 1, further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information on the mobile device from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

6. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

7. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

8. The method of claim 1, further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

9. The method of claim 1, wherein:

the mobile device is connected to a first telecommunication network and the wireless transceiver is connected to a second telecommunication network; and

sending the determined approximate location of the mobile device to the wireless transceiver comprises the mobile device establishing a near field communication link to the wireless transceiver and the mobile device sending the determined approximate location of the mobile device to the wireless transceiver over the established near field communication link.

10. The method of claim 1, wherein receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device sensor information collected from a sensor of the wireless transceiver.

11. The method of claim 10, wherein receiving on the mobile device sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

12. The method of claim 1, wherein determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

13. The method of claim 12, wherein determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

14. A mobile device, comprising:

a memory; and

a processor coupled to the memory, wherein the processor is configured with processor-executable instructions to perform operations comprising:

determining an approximate location of the mobile device;

grouping with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

15. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that:

grouping with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

16. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

17. (Original) The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

18. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

19. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

20. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

21. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

22. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the processor is configured with processor-executable instructions such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

23. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

24. The mobile device of claim 23, wherein the processor is configured with processor-executable instructions to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

25. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

26. The mobile device of claim 25, wherein the processor is configured with processor-executable instructions to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

27. A non-transitory computer readable storage medium having stored thereon processor-executable software instructions configured to cause a processor of a mobile device to perform operations comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

28. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

29. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

30. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

31. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

32. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

33. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

34. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

35. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the stored processor-executable software instructions are configured to cause a processor to perform operations such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

36. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

37. The non-transitory computer readable storage medium of claim 36, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

38. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

39. The non-transitory computer readable storage medium of claim 38, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

About Rivada Networks

Rivada Networks is a leading designer, integrator and operator of wireless, interoperable public safety communications networks. Rivada’s core technology, Dynamic Spectrum Arbitrage Tiered Priority Access (DSATPA), allows wireless broadband capacity to be dynamically bought and sold in a fully competitive “on demand” process to competing commercial entities. DSATPA is a game changer for the way in which spectrum is consumed, maximizing the efficiency of the radio spectrum bandwidth resource and unlocking the potential for more extensive high capacity broadband networks.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
SYS-CON Events announced today that Alert Logic, the leading provider of Security-as-a-Service solutions for the cloud, has been named “Bronze Sponsor” of SYS-CON's 17th International Cloud Expo® and DevOps Summit 2015 Silicon Valley, which will take place November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Alert Logic provides Security-as-a-Service for on-premises, cloud, and hybrid IT infrastructures, delivering deep security insight and continuous protection for cust...
SYS-CON Events announced today that SoftLayer, an IBM company, has been named “Gold Sponsor” of SYS-CON's 17th International Cloud Expo®, which will take place November 3–5, 2015 at the Santa Clara Convention Center in Santa Clara, CA. SoftLayer operates a global cloud infrastructure platform built for Internet scale. With a global footprint of data centers and network points of presence, SoftLayer provides infrastructure as a service to leading-edge customers ranging from Web startups to globa...
"A lot of the enterprises that have been using our systems for many years are reaching out to the cloud - the public cloud, the private cloud and hybrid," stated Reuven Harrison, CTO and Co-Founder of Tufin, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Connected things, systems and people can provide information to other things, systems and people and initiate actions for each other that result in new service possibilities. By taking a look at the impact of Internet of Things when it transitions to a highly connected services marketplace we can understand how connecting the right “things” and leveraging the right partners can provide enormous impact to your business’ growth and success. In her general session at @ThingsExpo, Esmeralda Swartz...
The basic integration architecture, as defined by ESBs, hasn’t changed for more than a decade. Most cloud integration providers still rely on an ESB architecture and their proprietary connectors. As a result, enterprise integration projects suffer from constraints of availability and reliability of these connectors that are not re-usable across other integration vendors. However, the rapid adoption of APIs and almost ubiquitous availability of APIs amongst most SaaS and Cloud applications are ra...
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the ...
In their general session at 16th Cloud Expo, Michael Piccininni, Global Account Manager - Cloud SP at EMC Corporation, and Mike Dietze, Regional Director at Windstream Hosted Solutions, reviewed next generation cloud services, including the Windstream-EMC Tier Storage solutions, and discussed how to increase efficiencies, improve service delivery and enhance corporate cloud solution development. Michael Piccininni is Global Account Manager – Cloud SP at EMC Corporation. He has been engaged in t...
SYS-CON Events announced today that WHOA.com, an ISO 27001 Certified secure cloud computing company, participated as “Bronze Sponsor” of SYS-CON's 16th International Cloud Expo® New York, which took place June 9-11, 2015, at the Javits Center in New York City, NY. WHOA.com is a leader in next-generation, ISO 27001 Certified secure cloud solutions. WHOA.com offers a comprehensive portfolio of best-in-class cloud services for business including Infrastructure as a Service (IaaS), Secure Cloud Desk...
Containers are revolutionizing the way we deploy and maintain our infrastructures, but monitoring and troubleshooting in a containerized environment can still be painful and impractical. Understanding even basic resource usage is difficult – let alone tracking network connections or malicious activity. In his session at DevOps Summit, Gianluca Borello, Sr. Software Engineer at Sysdig, will cover the current state of the art for container monitoring and visibility, including pros / cons and liv...
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, will explore the IoT cloud-based platform technologies drivi...
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises ar...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
"The idea of polyglot persistence is you have to apply the right database for the job - you always have to have many different databases in play. We offer that whole system as a service," explained Raj Singh, Developer Advocate for IBM Cloud Data Services, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
SYS-CON Events announced today that Harbinger Systems will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Harbinger Systems is a global company providing software technology services. Since 1990, Harbinger has developed a strong customer base worldwide. Its customers include software product companies ranging from hi-tech start-ups in Silicon Valley to leading product companies in the US a...
DevOps Summit, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development...