Welcome!

News Feed Item

Rivada Networks Releases Full Text of Location-Based Services Patent

The U.S. Patent and Trademark Office today issued patent #8,787,944, Method and System for Providing Enhanced Location Based Information for Wireless Handsets, to Rivada Networks. As previously announced, Rivada’s latest patent allows nearby mobile devices to triangulate off each other, taking advantage of modern devices’ accelerometers and other means to determine relative location and movement, independent of the availability of a device’s main network. According to Rivada CTO Clint Smith, “This breakthrough technology could be implemented as an application on many existing mobile devices.”

Here follows the full text of the patent’s 39 claims:

1. A method of determining a location of a mobile device, comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving on the mobile device location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

2. The method of claim 1, wherein:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device location information from the plurality of wireless transceivers in the communication group.

3. The method of claim 1, wherein grouping the mobile device with a wireless transceiver in proximity to the mobile device comprises grouping the mobile device with a second mobile device.

4. The method of claim 1, wherein receiving location information on the mobile device from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

5. The method of claim 1, further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information on the mobile device from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

6. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

7. The method of claim 5, wherein sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

8. The method of claim 1, further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

9. The method of claim 1, wherein:

the mobile device is connected to a first telecommunication network and the wireless transceiver is connected to a second telecommunication network; and

sending the determined approximate location of the mobile device to the wireless transceiver comprises the mobile device establishing a near field communication link to the wireless transceiver and the mobile device sending the determined approximate location of the mobile device to the wireless transceiver over the established near field communication link.

10. The method of claim 1, wherein receiving on the mobile device location information from the wireless transceiver comprises receiving on the mobile device sensor information collected from a sensor of the wireless transceiver.

11. The method of claim 10, wherein receiving on the mobile device sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

12. The method of claim 1, wherein determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

13. The method of claim 12, wherein determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

14. A mobile device, comprising:

a memory; and

a processor coupled to the memory, wherein the processor is configured with processor-executable instructions to perform operations comprising:

determining an approximate location of the mobile device;

grouping with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

15. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that:

grouping with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

16. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

17. (Original) The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

18. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

19. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

20. The mobile device of claim 18, wherein the processor is configured with processor-executable instructions to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

21. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

22. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the processor is configured with processor-executable instructions such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

23. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

24. The mobile device of claim 23, wherein the processor is configured with processor-executable instructions to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

25. The mobile device of claim 14, wherein the processor is configured with processor-executable instructions to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

26. The mobile device of claim 25, wherein the processor is configured with processor-executable instructions to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

27. A non-transitory computer readable storage medium having stored thereon processor-executable software instructions configured to cause a processor of a mobile device to perform operations comprising:

determining an approximate location of the mobile device;

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group;

sending the determined approximate location of the mobile device to the wireless transceiver;

receiving location information from the wireless transceiver; and

determining a more precise location of the mobile device based on the location information received from the wireless transceiver.

28. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that:

grouping the mobile device with a wireless transceiver in proximity to the mobile device to form a communication group comprises grouping the mobile device with a plurality of wireless transceivers in proximity to the mobile device to form the communication group; and

receiving location information from the wireless transceiver comprises receiving location information from the plurality of wireless transceivers in the communication group.

29. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that grouping with a wireless transceiver in proximity to the mobile device comprises grouping with a second mobile device.

30. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving a latitude coordinate, a longitude coordinate, and an altitude coordinate.

31. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

sending information relating to the determined more precise location of the mobile device and the received location information to a server;

receiving updated location information from the server; and

re-computing the more precise location of the mobile device based on the updated location information received from the server.

32. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending information to the server out of band.

33. The non-transitory computer readable storage medium of claim 31, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that sending information relating to the determined more precise location of the mobile device and the received location information to a server comprises sending sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

34. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

detecting movement of the mobile device; and

re-computing the approximate location of the mobile device in response to detecting the movement.

35. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations further comprising:

establishing a connection to a first telecommunication network; and

establishing a near field communication link to the wireless transceiver, the wireless transceiver being connected to a second telecommunication network, and wherein the stored processor-executable software instructions are configured to cause a processor to perform operations such that sending the determined approximate location of the mobile device to the wireless transceiver comprises sending the determined approximate location of the mobile device to the wireless transceiver over the near field communication link.

36. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving location information from the wireless transceiver comprises receiving sensor information collected from a sensor of the wireless transceiver.

37. The non-transitory computer readable storage medium of claim 36, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that receiving sensor information collected from a sensor of the wireless transceiver comprises receiving sensor information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

38. The non-transitory computer readable storage medium of claim 27, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining an approximate location of the mobile device comprises determining the approximate location of the mobile device based on information collected from sensors of the mobile device.

39. The non-transitory computer readable storage medium of claim 38, wherein the stored processor-executable software instructions are configured to cause a processor of a mobile device to perform operations such that determining the approximate location of the mobile device based on information collected from sensors of the mobile device comprises determining the approximate location of the mobile device based on information collected from at least one of:

an accelerometer;

a gyroscope;

a magnetometer; and

a pressure sensor.

About Rivada Networks

Rivada Networks is a leading designer, integrator and operator of wireless, interoperable public safety communications networks. Rivada’s core technology, Dynamic Spectrum Arbitrage Tiered Priority Access (DSATPA), allows wireless broadband capacity to be dynamically bought and sold in a fully competitive “on demand” process to competing commercial entities. DSATPA is a game changer for the way in which spectrum is consumed, maximizing the efficiency of the radio spectrum bandwidth resource and unlocking the potential for more extensive high capacity broadband networks.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
The need for greater agility and scalability necessitated the digital transformation in the form of following equation: monolithic to microservices to serverless architecture (FaaS). To keep up with the cut-throat competition, the organisations need to update their technology stack to make software development their differentiating factor. Thus microservices architecture emerged as a potential method to provide development teams with greater flexibility and other advantages, such as the abili...
ChatOps is an emerging topic that has led to the wide availability of integrations between group chat and various other tools/platforms. Currently, HipChat is an extremely powerful collaboration platform due to the various ChatOps integrations that are available. However, DevOps automation can involve orchestration and complex workflows. In his session at @DevOpsSummit at 20th Cloud Expo, Himanshu Chhetri, CTO at Addteq, will cover practical examples and use cases such as self-provisioning infra...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud host...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...