Welcome!

Related Topics: @BigDataExpo, Java IoT, Linux Containers, Containers Expo Blog, @CloudExpo, SDN Journal

@BigDataExpo: Article

Big Data Needs a Thought Collective

Big Data should follow the lead of the scientific method to put greater emphasis on sharing and reusing data

Sharing data is a cornerstone of the scientific method because it makes it possible to replicate work. That foundation is mostly absent from data science, which makes obtaining and reusing knowledge more difficult than it should be.

Job postings for data scientists increased 15,000 percent between 2011 and 2012, and Gartner predicted that 63% of organizations would invest in Big Data this year. The communications, consumer, education, financial, healthcare, government, manufacturing, and retail sectors are all adopting business practices that are using data science to inform their activities and improve operations.

There are a number of companies creating solutions to visualize and uncover insights from large volumes of data with robust platforms in operation worldwide. Vast volumes of data from applications logs to the network and business activities are well served by today's analytics technologies - computation isn't the issue. The ability to model data into experiments that act on data with data sources and conclusions is what's missing, and it's an emerging problem for businesses.

Gartner has observed that those same organizations are now "struggling" with deriving value from and managing Big Data (depending on organizational maturity). That could be due to what famed microbiologist Ludwik Fleck deemed an "empty mind" as he explored the sociology of science during the 1930s. What is that exactly? Fleck postulated that a mind must be filled with initial knowledge before it can perceive or think. This logic applies to organizations too.

Fleck's theory was that participating in a "thought collective" of institutional knowledge would fill minds. His works concluded that cognition is a collaborative activity because a body of knowledge is acquired from a group. It could be argued that making it possible to reuse data experiments would have the same effect. Organizations that can't find value in data have an empty mind.

Big Data should follow the lead of the scientific method (which was influenced by Fleck's ideas) to put greater emphasis on sharing and reusing data. Why is that important for businesses? Scientific data is easy to share among different organizations. Having the ability to do the same with data science could solve what's emerging as a major pain point. Employees change roles and organizations, but what happens to the knowledge, experiments, and patterns?

Whether the academic model would also function in the enterprise is a fascinating question for data scientists, operations professionals and industries. The next great "open source" horizon could be the exchange of knowledge.

It would be interesting to see companies take on the challenge of building systems that organize and share experiments more liberally to put an end to the empty brain problem. After all, data science is still science. Why should it be treated differently?

More Stories By Haim Koshchitzky

Haim Koshchitzky is the Founder and CEO of XpoLog and has over 20 years of experience in complex technology development and software architecture. Prior to XpoLog, he spent several years as the tech lead for Mercury Interactive (acquired by HP) and other startups. He has a passion for data analytics and technology, and is also an avid marathon runner and Judo black belt.

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
With 15% of enterprises adopting a hybrid IT strategy, you need to set a plan to integrate hybrid cloud throughout your infrastructure. In his session at 18th Cloud Expo, Steven Dreher, Director of Solutions Architecture at Green House Data, discussed how to plan for shifting resource requirements, overcome challenges, and implement hybrid IT alongside your existing data center assets. Highlights included anticipating workload, cost and resource calculations, integrating services on both sides...
In his session at @DevOpsSummit at 19th Cloud Expo, Yoseph Reuveni, Director of Software Engineering at Jet.com, will discuss Jet.com's journey into containerizing Microsoft-based technologies like C# and F# into Docker. He will talk about lessons learned and challenges faced, the Mono framework tryout and how they deployed everything into Azure cloud. Yoseph Reuveni is a technology leader with unique experience developing and running high throughput (over 1M tps) distributed systems with extre...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
Big Data engines are powering a lot of service businesses right now. Data is collected from users from wearable technologies, web behaviors, purchase behavior as well as several arbitrary data points we’d never think of. The demand for faster and bigger engines to crunch and serve up the data to services is growing exponentially. You see a LOT of correlation between “Cloud” and “Big Data” but on Big Data and “Hybrid,” where hybrid hosting is the sanest approach to the Big Data Infrastructure pro...
In his session at 18th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., and Logan Best, Infrastructure & Network Engineer at Webair, focused on real world deployments of DDoS mitigation strategies in every layer of the network. He gave an overview of methods to prevent these attacks and best practices on how to provide protection in complex cloud platforms. He also outlined what we have found in our experience managing and running thousands of Linux and Unix ...
Cloud analytics is dramatically altering business intelligence. Some businesses will capitalize on these promising new technologies and gain key insights that’ll help them gain competitive advantage. And others won’t. Whether you’re a business leader, an IT manager, or an analyst, we want to help you and the people you need to influence with a free copy of “Cloud Analytics for Dummies,” the essential guide to this explosive new space for business intelligence.
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
Choosing the right cloud for your workloads is a balancing act that can cost your organization time, money and aggravation - unless you get it right the first time. Economics, speed, performance, accessibility, administrative needs and security all play a vital role in dictating your approach to the cloud. Without knowing the right questions to ask, you could wind up paying for capacity you'll never need or underestimating the resources required to run your applications.
Enterprise networks are complex. Moreover, they were designed and deployed to meet a specific set of business requirements at a specific point in time. But, the adoption of cloud services, new business applications and intensifying security policies, among other factors, require IT organizations to continuously deploy configuration changes. Therefore, enterprises are looking for better ways to automate the management of their networks while still leveraging existing capabilities, optimizing perf...
"Software-defined storage is a big problem in this industry because so many people have different definitions as they see fit to use it," stated Peter McCallum, VP of Datacenter Solutions at FalconStor Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...