Welcome!

News Feed Item

Nano-Bio Manufacturing Consortium Awards Funding to Binghamton University for Development of Electronics and Biometric Sensor Platforms

Project selected for its focus on optimizing packaging to ensure robustness of wearable sensors

SAN JOSE, Calif., July 30, 2014 /PRNewswire/ -- The Nano-Bio Manufacturing Consortium (NBMC), an industry-academia partnership with the United States Air Force Research Laboratory (AFRL), has awarded funding for a project proposed by Binghamton University to develop electronics and biometric sensor platforms for human performance monitoring (HPM). The $425,000 project, with contributions from the University of California, Berkeley, and electronics packaging firm i3 Electronics, Inc. (Endicott, N.Y.), is scheduled for completion in early 2015. 

The electronics platform includes a flexible substrate, battery, processor, WiFi communications and interface electronics. The biometric sensor platform includes temperature and electrocardiogram (ECG) sensors, allowing calculation of the wearer's heart rate.  ECG signals from human subjects and from an archive of human ECG recordings (from both healthy individuals and those with clinical conditions) will be utilized to test the sensor electrodes and onboard electronics. The processed data will be used to calculate heart rate, and data transmitted to a local network will be compared to the input signals. These tests will then be repeated on 10 units produced in the manufacturing run, all of which will be used to transmit ECGs, heart rate and temperature from human subjects. A second LED-based oximeter sensor will also be evaluated for the detection of blood oxygen levels and heart rate.

Before establishing final manufacturing protocols and executing the manufacturing run, the team will fabricate and performance-test the integrated platforms to determine whether the HPM solution will be fabricated from electronics and sensor platforms on separate substrates laminated together, or printed and assembled sequentially on the same substrate.  Variables evaluated in making this determination will include the quality of "printed" gold electrodes and electrical conductors, substrate bond quality, platform power consumption and peak current demand.

"Package form factor and quality play a vital role in creating robust, wearable HPM solutions that are viable for high-volume manufacturing," said Raj Rai, i3 Electronics' chief technology officer. "We are excited to leverage our expertise in board fabrication, packaging, assembly and test for projects such as this that have the potential to enable fundamental improvements in people's everyday lives."

Dr. Benjamin J. Leever, AFRL Program Manager for Flexible Materials & Devices, stated, "Wearable HPM sensors have the potential to provide invaluable insight into the state of individual airmen in both operational and medical scenarios.  Developing and demonstrating an integrated biometric sensor platform is an essential milestone toward realizing this important goal."

Binghamton University has primary responsibility for project coordination, systems integration, circuit design and testing, and HPM performance testing. UC Berkeley is responsible for printing and verifying the sensor platforms, while i3 Electronics handles fabricating on flexible substrates, component assembly, manufacturing protocols and the 10-unit manufacturing run for final performance testing. Binghamton's Dr. James N. Turner, research scientist in the Small Scale Systems Integration & Packaging Center, is the project lead, with UC Berkeley represented by Ana Claudia Arias, associate professor, Dept. of Electrical Engineering and Computer Sciences. The AFRL program manager is Laura S. Rea.

Dr. Turner noted, "As a New York State Center of Excellence, Binghamton University is proud to have this project selected for the NBMC's efforts to optimize HPM systems for the US Air Force.  Partnering with i3 Electronics and UC Berkeley has allowed us a unique opportunity both to collaborate with colleagues at a prestigious institution on the opposite coast, as well as to 'keep it local' by working with an Endicott firm known for excellence in electronics packaging. The project also leverages Binghamton University's Center for Advanced Microelectronics Manufacturing which is a component of the Center of Excellence and a leader in the research for manufacturing of flexible electronics."

Malcolm Thompson, NBMC's CEO, said, "The Binghamton University project represents an interesting and well-defined approach to determining the best components and packaging techniques for creating a manufacturable electronic and biometric sensor platform. It will be exciting to see what the results indicate at the conclusion of this project."

About NBMC
The Nano-Bio Manufacturing Consortium (NBMC) was formed by the FlexTech Alliance, for the U.S. Air Force Research Laboratory (AFRL). NBMC brings together leading scientists, engineers, and business development professionals from industry and universities to mature an integrated suite of nano-bio manufacturing technologies and transition to industrial manufacturing.  To do so, NBMC operates at the confluence of emerging disciplines: nanotechnology, biotechnology, advanced (additive) manufacturing, and flexible electronics - enabling advanced sensor architectures for real-time, remote physiological and health monitoring.

SOURCE Nano-Bio Manufacturing Consortium

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, will show how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningfu...
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
Redis is not only the fastest database, but it has become the most popular among the new wave of applications running in containers. Redis speeds up just about every data interaction between your users or operational systems. In his session at 18th Cloud Expo, Dave Nielsen, Developer Relations at Redis Labs, will shares the functions and data structures used to solve everyday use cases that are driving Redis' popularity.
We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, will discuss how leveraging the Industrial Interne...
In his session at 18th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., will focus on real world deployments of DDoS mitigation strategies in every layer of the network. He will give an overview of methods to prevent these attacks and best practices on how to provide protection in complex cloud platforms. He will also outline what we have found in our experience managing and running thousands of Linux and Unix managed service platforms and what specifically c...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Many private cloud projects were built to deliver self-service access to development and test resources. While those clouds delivered faster access to resources, they lacked visibility, control and security needed for production deployments. In their session at 18th Cloud Expo, Steve Anderson, Product Manager at BMC Software, and Rick Lefort, Principal Technical Marketing Consultant at BMC Software, will discuss how a cloud designed for production operations not only helps accelerate developer...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.
A critical component of any IoT project is the back-end systems that capture data from remote IoT devices and structure it in a way to answer useful questions. Traditional data warehouse and analytical systems are mature technologies that can be used to handle large data sets, but they are not well suited to many IoT-scale products and the need for real-time insights. At Fuze, we have developed a backend platform as part of our mobility-oriented cloud service that uses Big Data-based approache...
Peak 10, Inc., has announced the implementation of IT service management, a business process alignment initiative based on the widely adopted Information Technology Infrastructure Library (ITIL) framework. The implementation of IT service management enhances Peak 10’s current service-minded approach to IT delivery by propelling the company to deliver higher levels of personalized and prompt service. The majority of Peak 10’s operations employees have been trained and certified in the ITIL frame...