Click here to close now.


Related Topics: Microservices Expo, Java IoT, Linux Containers, Containers Expo Blog, @CloudExpo, @BigDataExpo, SDN Journal

Microservices Expo: Article

Understanding APM on the Network

TCP Window Size

In Part 6, we dove into the Nagle algorithm - perhaps (or hopefully) something you'll never see. In Part VII, we get back to "pure" network and TCP roots as we examine how the TCP receive window interacts with WAN links.

TCP Window Size
Each node participating in a TCP connection advertises its available buffer space using the TCP window size field. This value identifies the maximum amount of data a sender can transmit without receiving a window update via a TCP acknowledgement; in other words, this is the maximum number of "bytes in flight" - bytes that have been sent, are traversing the network, but remain unacknowledged. Once the sender has reached this limit and exhausted the receive window, the sender must stop and wait for a window update.

The sender transmits a full window then waits for window updates before continuing. As these window updates arrive, the sender advances the window and may transmit more data.

Long Fat Networks
High-speed, high-latency networks, sometimes referred to as Long Fat Networks (LFNs), can carry a lot of data. On these networks, small receive window sizes can limit throughput to a fraction of the available bandwidth. These two factors - bandwidth and latency - combine to influence the potential impact of a given TCP window size. LFNs networks make it possible - common, even - for a sender to transmit very fast (high bandwidth) an entire TCP window's worth of data, having then to wait until the packets reach the distant remote site (high latency) so that acknowledgements can be returned, informing the sender of successful data delivery and available receive buffer space.

The math (and physics) concepts are straightforward. As the network speed increases, data can be clocked out onto the network medium more quickly; the bits are literally closer together. As latency increases, these bits take longer to traverse the network from sender to receiver. As a result, more bits can fit on the wire. As LFNs become more common, exhausting a receiver's TCP window becomes increasingly problematic for some types of applications.

Bandwidth Delay Product
The Bandwidth Delay Product (BDP) is a simple formula used to calculate the maximum amount of data that can exist on the network (referred to as bits or bytes in flight) based on a link's characteristics:

  • Bandwidth (bps) x RTT (seconds) = bits in flight
  • Divide the result by 8 for bytes in flight

If the BDP (in bytes) for a given network link exceeds the value of a session's TCP window, then the TCP session will not be able to use all of the available bandwidth; instead, throughput will be limited by the receive window (assuming no other constraints, of course).

The BDP can also be used to calculate the maximum throughput ("bandwidth") of a TCP connection given a fixed receive window size:

  • Bandwidth = (window size *8)/RTT

In the not-too-distant past, the TCP window had a maximum value of 65535 bytes. While today's TCP implementations now generally include a TCP window scaling option that allows for negotiated window sizes to reach 1GB, many factors limit its practical utility. For example, firewalls, load balancers and server configurations may purposely disable the feature. The reality is that we often still need to pay attention to the TCP window size when considering the performance of applications that transfer large amounts of data, particularly on enterprise LFNs.

As an example, consider a company with offices in New York and San Francisco; they need to replicate a large database each night, and have secured a 20Mbps network connection with 85 milliseconds of round-trip delay. Our BDP calculation tells us that the BDP is 212,500 (20,000,000 x .085 *8); in other words, a single TCP connection would require a 212KB window in order to take advantage of all of the bandwidth. The BDP calculation also tells us that the configured TCP window size of 65535 will permit approximately 6Mbps throughput (65535*8/.085), less than 1/3 of the link's capacity.

A link's BDP and a receiver's TCP window size are two factors that help us to identify the potential throughput of an operation. The remaining factor is the operation itself, specifically the size of individual request or reply flows. Only flows that exceed the receiver's TCP window size will benefit from, or be impacted by, these TCP window size constraints. Two common scenarios help illustrate this. Let's say a user needs to transfer a 1GB file:

  • Using FTP (in stream mode) will cause the entire file to be sent in a single flow; this operation could be severely limited by the receive window.
  • Using SMB (at least older versions of the protocol) will cause the file to be sent in many smaller write commands, as SMB used to limit write messages to under 64KB; this operation would not be able to take advantage of a TCP receive window of greater than 64K. (Instead, the operation would more likely be limited by application turns and link latency; we discuss chattiness in Part 8.)

For more networking tips, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

Latest Stories
The revocation of Safe Harbor has radically affected data sovereignty strategy in the cloud. In his session at 17th Cloud Expo, Jeff Miller, Product Management at Cavirin Systems, discussed how to assess these changes across your own cloud strategy, and how you can mitigate risks previously covered under the agreement.
Countless business models have spawned from the IaaS industry – resell Web hosting, blogs, public cloud, and on and on. With the overwhelming amount of tools available to us, it's sometimes easy to overlook that many of them are just new skins of resources we've had for a long time. In his general session at 17th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, an IBM Company, broke down what we have to work with, discussed the benefits and pitfalls and how we can best use them ...
Most of the IoT Gateway scenarios involve collecting data from machines/processing and pushing data upstream to cloud for further analytics. The gateway hardware varies from Raspberry Pi to Industrial PCs. The document states the process of allowing deploying polyglot data pipelining software with the clear notion of supporting immutability. In his session at @ThingsExpo, Shashank Jain, a development architect for SAP Labs, discussed the objective, which is to automate the IoT deployment proces...
We all know that data growth is exploding and storage budgets are shrinking. Instead of showing you charts on about how much data there is, in his General Session at 17th Cloud Expo, Scott Cleland, Senior Director of Product Marketing at HGST, showed how to capture all of your data in one place. After you have your data under control, you can then analyze it in one place, saving time and resources.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningf...
DevOps is about increasing efficiency, but nothing is more inefficient than building the same application twice. However, this is a routine occurrence with enterprise applications that need both a rich desktop web interface and strong mobile support. With recent technological advances from Isomorphic Software and others, rich desktop and tuned mobile experiences can now be created with a single codebase – without compromising functionality, performance or usability. In his session at DevOps Su...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
In his General Session at 17th Cloud Expo, Bruce Swann, Senior Product Marketing Manager for Adobe Campaign, explored the key ingredients of cross-channel marketing in a digital world. Learn how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects).
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
In recent years, at least 40% of companies using cloud applications have experienced data loss. One of the best prevention against cloud data loss is backing up your cloud data. In his General Session at 17th Cloud Expo, Sam McIntyre, Partner Enablement Specialist at eFolder, presented how organizations can use eFolder Cloudfinder to automate backups of cloud application data. He also demonstrated how easy it is to search and restore cloud application data using Cloudfinder.
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, exploreed the current state of IoT connectivity and review key trends and t...
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessi...
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now ...