Welcome!

News Feed Item

Onshore Wind Energy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014 - 2020

NEW YORK, Aug 13, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Onshore Wind Energy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014 - 2020

http://www.reportlinker.com/p02294114/Onshore-Wind-Energy-Market---Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast-2014---2020.html

Wind energy is a relatively mature method of generating renewable energy. It has garnered significant share in the global renewable energy market due to its relatively mature technology and low cost of generation vis-à-vis other renewable energy sources. The wind industry's rapid development in the past few years indicates its significant potential to create jobs, spur economic activity and reduce greenhouse gas emissions.

Onshore wind energy is a relatively old technology. It has emerged as one of the most developed renewable energy generation methods in use currently. Both project development experience and technology maturity for the onshore wind energy sector is relatively high. The market for wind turbine suppliers is consolidated in nature, with 10 major turbine suppliers accounting for nearly 75% of the annual installations in 2013. The high technology maturity component is one of the primary driving factors for wind energy. A large number of project developers exist in the market. These are duly supported by national government installation targets. This has helped boost investor confidence in the wind energy sector. The technology has achieved a certain degree of maturity; however, there is still ample scope for cost reduction through technological innovations and deployment of large multi-megawatt turbines.

This research is designed to estimate, analyze and forecast the market volume and revenue for the wind power generation market. It provides an in-depth analysis of the market size of wind power in terms of capacity (MW) and revenue (USD Billion). The baseline data for this report has been taken as 2013, while all the forecasts are carried out for the 2014 to 2020 period. Wind energy can be broadly segmented into offshore and onshore. However, this report focuses exclusively on the onshore market. The report analyzes the onshore wind energy sector in detail along with deep dive research that spans five regions and 36 countries. The market has been segmented based on geography into five regions: North America, Asia Pacific, Europe, the Middle East & Africa and South & Central America. About 36 countries across these five regions have been separately analyzed to obtain a better idea of the wind energy sector globally. The market has been forecasted using the unique bottom-up approach, where individual country forecasts were added up to provide regional and global market sizes. The report primarily focuses on wind turbine developers as they form an integral part of the wind value chain. Turbine cost projections and forecasts have been provided in the report and accounted for while calculating revenue figures. The company market share provided in the report focuses on the market share of wind turbine manufacturers with respect to turbine capacities supplied by them for 2013.

The market size for onshore wind power generation has been estimated by studying the possible future technology trends in the market. Detailed research of countries and region-specific wind associations has been undertaken to estimate and forecast the installed capacity and investments in the onshore wind energy sector. As part of the bottom-up approach adopted for forecasting purposes, a deep dive regulatory analysis was required. The regulatory framework for each of the 36 countries accounted for in the report was analyzed separately. This provided a clear indication regarding the general approach of the government towards wind energy and the overall investment sentiment in the country. Legislations specifying quotas for indigenous manufacturing and renewable energy purchase also provided a clear idea regarding the clustering of turbine developers in a region, which may be observed in the future.

The report includes Porter's five forces model and value chain analysis for the onshore wind energy sector. These have been included with respect to turbine manufacturers, developers and suppliers. Drivers, restraints and opportunities for the market have been broadly identified. Both drivers and restraints for the onshore wind energy market are subject to country or region-wise variations. On the global scale, only the most attractive drivers and pressing restraints have been included. The market attractiveness study has been conducted regionally. The study has been quantified using different factors that play a major role in determining the overall attractiveness of the market. With long-term power purchase agreements in place, project financing is not much of a hassle. The global onshore energy market has been segmented as below:

Onshore Wind Energy Market: Regional Analysis
North America
The U.S.
Canada
Mexico
Asia-Pacific
Australia
India
China
New Zealand
Japan
South Korea
Taiwan

Others
Europe
The U.K.
Denmark
Belgium
Germany
Finland
Sweden
Norway
Ireland
Portugal
Spain
The Netherlands
France
Italy
Poland

Austria
Ukraine
Turkey
Greece
Romania
Others
The Middle East & Africa
Iran
Morocco
Tunisia
Egypt
Others
South & Central America
Argentina
Brazil
Costa Rica
Others
Chapter 1 Preface
1.1 Report Description
1.2 Research Scope
1.3 Market Segmentation
1.4 Research Methodology

Chapter 2 Executive Summary

Chapter 3 Market Overview
3.1 Introduction
3.2 Value Chain Analysis
3.3 Market Drivers
3.3.1 Generation of electricity at grid parity levels increases adoption
3.3.2 Aggressive renewable energy capacity addition targets for wind energy established through legislations
3.3.3 Low risk of technology failure boosting investor confidence
3.4 Market Restraints
3.4.1 Low tolerance for noise coupled with visual impact of wind turbines resulting in project siting issues
3.5 Market Opportunities
3.5.1 Manufacturing of vital components for wind technology using alternative materials to derive cost savings
3.6 Porter's five forces analysis
3.6.1 Bargaining power of suppliers
3.6.2 Bargaining power of buyers
3.6.3 Threat from new entrants
3.6.4 Degree of competition

3.6.5 Threat from substitutes
3.7 Onshore Wind Energy: Plant Cost Analysis
3.7.1 Global Onshore Wind energy plant cost breakdown and forecast, by cost type, 2013 – 2020, (Million USD/MW)
3.7.1.1 Civil Works
3.7.1.2 Grid Connections
3.7.1.3 Planning and development
3.7.2 Global Onshore Wind energy turbine cost breakdown and forecast, by cost type, 2013 – 2020, (Million USD/MW)
3.7.2.1 Rotor Blades cost analysis
3.7.2.2 Generator Cost Analysis
3.7.2.3 Towers Cost Analysis

3.7.2.4 Gearbox Cost Analysis
3.7.2.5 Power Converter Cost Analysis
3.7.2.6 Transformers Cost Analysis
3.8 Market attractiveness analysis of the Onshore Wind Energy Market, by region, 2013
3.9 Company market share analysis : Onshore Wind Energy
3.9.1 Onshore Wind Energy, company market share analysis (MW), 2013

Chapter 4 Onshore Wind Energy Market: Regional Analysis
4.1 Onshore Wind Energy Market: Regional overview
4.1.1 Global onshore wind energy market, volume share by region, 2013 and 2020 (MW)
4.2 North America
4.2.1 North America onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.2 U.S.A
4.2.2.1 U.S.A onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.2.2 Regulatory Snapshot: U.S.A
4.2.3 Canada

4.2.3.1 Canada onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.3.2 Regulatory Snapshot: Canada
4.2.4 Mexico
4.2.4.1 Mexico onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.4.2 Regulatory Snapshot: Mexico
4.2.5 Turbine Analysis
4.2.5.1 North America Wind Turbine Distribution, By Turbine Class (%)
4.2.6 Planned Onshore Wind Energy Projects
4.3 Asia Pacific
4.3.1 Asia Pacific onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.2 Australia
4.3.2.1 Australia onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.2.2 Regulatory Snapshot: Australia
4.3.3 China
4.3.3.1 China onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.3.2 Regulatory Snapshot: China

4.3.4 India
4.3.4.1 India onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.4.2 Regulatory Snapshot: India
4.3.5 Japan
4.3.5.1 Japan onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.5.2 Regulatory Snapshot: Japan
4.3.6 New Zealand
4.3.6.1 New Zealand onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.6.2 Regulatory Snapshot: New Zealand
4.3.7 South Korea
4.3.7.1 South Korea onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.7.2 Regulatory Snapshot: South Korea
4.3.8 Taiwan
4.3.8.1 Taiwan onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.8.2 Regulatory Snapshot: Taiwan
4.3.9 Others
4.3.9.1 Others onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.10 Turbine Analysis
4.3.10.1 Asia-Pacific Wind Turbine distribution, by turbine class (%)
4.3.11 Planned Onshore Wind Energy Projects
4.4 Europe
4.4.1 Europe onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.2 U.K

4.4.2.1 U.K onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.2.2 Regulatory Snapshot: the U.K
4.4.3 Denmark
4.4.3.1 Denmark onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.3.2 Regulatory Snapshot: Denmark
4.4.4 Belgium
4.4.4.1 Belgium onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.4.2 Regulatory Snapshot: Belgium
4.4.5 Germany
4.4.5.1 Germany onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.5.2 Regulatory Snapshot: Germany
4.4.6 Finland
4.4.6.1 Finland onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.6.2 Regulatory Snapshot: Finland
4.4.7 Sweden
4.4.7.1 Sweden onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.7.2 Regulatory Snapshot: Sweden
4.4.8 Norway
4.4.8.1 Norway onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.8.2 Regulatory Snapshot: Norway
4.4.9 Ireland
4.4.9.1 Ireland onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.9.2 Regulatory Snapshot: Ireland
4.4.10 Portugal
4.4.10.1 Portugal onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.10.2 Regulatory Snapshot: Portugal
4.4.11 Spain
4.4.11.1 Spain onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.11.2 Regulatory Snapshot: Spain

4.4.12 France
4.4.12.1 France onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.12.2 Regulatory Snapshot: France
4.4.13 Italy
4.4.13.1 Italy onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.13.2 Regulatory Snapshot: Italy
4.4.14 Netherlands
4.4.14.1 Netherlands onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.14.2 Regulatory Snapshot: Netherlands
4.4.15 Poland
4.4.15.1 Poland onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.15.2 Regulatory Snapshot: Poland
4.4.16 Austria
4.4.16.1 Austria onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.16.2 Regulatory Snapshot: Austria
4.4.17 Ukraine
4.4.17.1 Ukraine onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.17.2 Regulatory Snapshot: Ukraine

4.4.18 Romania
4.4.18.1 Romania onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.18.2 Regulatory Snapshot: Romania
4.4.19 Turkey
4.4.19.1 Turkey onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.19.2 Regulatory Snapshot: Turkey
4.4.20 Greece
4.4.20.1 Greece onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.20.2 Regulatory Snapshot: Greece
4.4.21 Others
4.4.21.1 Others onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.22 Turbine Analysis
4.4.22.1 Europe Wind Turbine distribution, By Turbine Class (%)
4.4.23 Planned Onshore Wind Energy Projects
4.5 Middle East and Africa (MEA)
4.5.1 MEA onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.2 Iran
4.5.2.1 Iran onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.2.2 Regulatory Snapshot: Iran
4.5.3 Egypt

4.5.3.1 Egypt onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.3.2 Regulatory Snapshot: Egypt
4.5.4 Morocco
4.5.4.1 Morocco onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.4.2 Regulatory Snapshot: Morocco
4.5.5 Tunisia
4.5.5.1 Tunisia onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.5.2 Regulatory Snapshot: Tunisia
4.5.6 Others
4.5.6.1 Others onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.7 Turbine Analysis
4.5.7.1 Middle East & Africa Wind Turbine distribution, By Turbine Class (%)
4.5.8 Planned Onshore Wind Energy Projects
4.6 South and Central America
4.6.1 South and Central America onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.2 Argentina
4.6.2.1 Argentina onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.2.2 Regulatory Snapshot: Argentina
4.6.3 Brazil
4.6.3.1 Brazil onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.3.2 Regulatory Snapshot: Brazil

4.6.4 Costa Rica
4.6.4.1 Costa Rica onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.4.2 Regulatory Snapshot: Costa Rica
4.6.5 Others
4.6.5.1 Others onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.6 Turbine Analysis
4.6.6.1 South & Central America Wind Turbine distribution, By Turbine Class (%)
4.6.7 Planned Onshore Wind Energy Projects

Chapter 5 Company Profiles
5.1 Gamesa Corporacion Tecnologica SA
5.1.1 Company Overview
5.1.2 Product Portfolio
5.1.3 Financial Overview
5.1.4 Business Strategy
5.1.5 SWOT Analysis
5.1.6 Recent Developments
5.2 Goldwind Science and Technology Co., Ltd.
5.2.1 Company Overview
5.2.2 Product Portfolio
5.2.3 Financial Overview
5.2.4 Business Strategy
5.2.5 SWOT Analysis
5.2.6 Recent Developments
5.3 Siemens Wind Power

5.3.1 Company Overview
5.3.2 Product Portfolio
5.3.3 Financial Overview
5.3.4 Business Strategy
5.3.5 SWOT Analysis
5.3.6 Recent Developments
5.4 Sinovel Wind Group Co., Ltd.
5.4.1 Company overview
5.4.2 Product Portfolio
5.4.3 Business Strategy
5.4.4 SWOT Analysis
5.5 Vestas Wind Systems A/S
5.5.1 Company Overview
5.5.2 Product Portfolio
5.5.3 Financial Overview
5.5.4 Business Strategy
5.5.5 SWOT Analysis
5.5.6 Recent Developments
5.6 Dongfang Electric Corporation Limited
5.6.1 Company Overview
5.6.2 Product Portfolio
5.6.3 Financial Overview
5.6.4 Business Strategy
5.6.5 SWOT Analysis
5.6.6 Recent Developments
5.7 GE Wind Energy
5.7.1 Company Overview

5.7.2 Product Portfolio
5.7.3 Financial Overview
5.7.4 Business Strategy
5.7.5 SWOT Analysis
5.7.6 Recent Developments
5.8 Enercon GmbH
5.8.1 Company Overview
5.8.2 Product Portfolio
5.8.3 Business Strategy
5.8.4 SWOT Analysis
5.8.5 Recent Developments
5.9 Nordex SE
5.9.1 Company Overview
5.9.2 Product Portfolio
5.9.3 Financial Overview
5.9.4 Business Strategy
5.9.5 SWOT Analysis
5.9.6 Recent Developments
5.10 China Ming Yang Wind Power Group Limited
5.10.1 Company Overview
5.10.2 Product Portfolio
5.10.3 Financial Overview
5.10.4 Business Strategy
5.10.5 SWOT Analysis
5.10.6 Recent Developments
List of Figures

FIG. 1 Onshore Wind Energy: Market segmentation
FIG. 2 Global Onshore Wind Energy Market Volume and Revenue, 2014 – 2020 (MW) (USD Million)
FIG. 3 Value chain analysis of Onshore Wind Energy
FIG. 4 Porter's five forces analysis
FIG. 5 Global Onshore wind energy market, project cost breakdown by cost type, 2013 and 2020
FIG. 6 Civil Works cost reduction opportunity, By cost influencing factors
FIG. 7 Grid Connection cost reduction opportunity, By cost influencing factors
FIG. 8 Global Onshore wind energy market, wind turbine cost breakdown by component costs, 2013 and 2020
FIG. 9 Rotor Blade cost reduction opportunity, By cost influencing factors
FIG. 10 Turbine Tower cost reduction opportunity, By cost influencing factors
FIG. 11 Gearbox and Power Converter cost reduction opportunity, By cost influencing factors
FIG. 12 Transformer cost reduction opportunity, By cost influencing factors
FIG. 13 Market attractiveness analysis of Onshore Wind Energy Market, by Region, 2013
FIG. 14 Company market share of Onshore Wind Energy industry (MW), 2013
FIG. 15 Global onshore wind energy market, volume share by region, 2013 and 2020 (MW)
FIG. 16 North America onshore wind energy market volume and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 17 U.S.A onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 18 Canada onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 19 Mexico onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 20 North America Wind Turbine Distribution, By Turbine Class (2013)
FIG. 21 Asia Pacific onshore wind energy market volume and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 22 Australia onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 23 China onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 24 India onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 25 Japan onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 26 New Zealand onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)

FIG. 27 South Korea onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 28 Taiwan onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 29 Others onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 30 Asia-Pacific Wind Turbine Distribution, By Turbine Class (2013)
FIG. 31 Europe onshore wind energy market volume and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 32 U.K onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 33 Denmark onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 34 Belgium onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 35 Germany onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 36 Finland onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 37 Sweden onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 38 Norway onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 39 Ireland onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 40 Portugal onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 41 Spain onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 42 France onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 43 Italy onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 44 Netherlands onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 45 Poland onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 46 Austria onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)

FIG. 47 Ukraine onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 48 Romania onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 49 Turkey onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 50 Greece onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 51 Others onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 52 Europe Wind Turbine Distribution, By Turbine Class (2013)
FIG. 53 MEA onshore wind energy market volume and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 54 Iran onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 55 Egypt onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 56 Morocco onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 57 Tunisia onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 58 Others onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 59 The Middle East & Africa, Wind Turbine Distribution, By Turbine Class (2013)
FIG. 60 South and Central America onshore wind energy market volume and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 61 Argentina onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 62 Brazil onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 63 Costa Rica onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 64 Others onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 65 The South & Central America, Wind Turbine Distribution, By Turbine Class (2013)
List of Tables

TABLE 1 Onshore Wind Energy Market: Snapshot
TABLE 2 Drivers of Onshore Wind Energy Market: Impact Analysis
TABLE 3 Restraints of Onshore Wind Energy Market: Impact Analysis
TABLE 4 Opportunities in Onshore Wind Energy Market: Impact Analysis
TABLE 5 Global Onshore Wind energy plant cost breakdown and forecast, by cost type, 2013 - 2020 (Million USD/MW)
TABLE 6 Global Onshore Wind energy turbine cost breakdown and forecast, by cost type, 2013 - 2020 (Million USD/MW)
TABLE 7 Planned Onshore Wind Energy Projects: North America
TABLE 8 Planned Onshore Wind Energy Projects: Asia-Pacific
TABLE 9 Planned Onshore Wind Energy Projects: Europe
TABLE 10 Planned Onshore Wind Energy Projects: Middle East & Africa
TABLE 11 Planned Onshore Wind Energy Projects: South & Central America

To order this report: Onshore Wind Energy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014 - 2020
http://www.reportlinker.com/p02294114/Onshore-Wind-Energy-Market---Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast-2014---2020.html

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
In his General Session at 16th Cloud Expo, David Shacochis, host of The Hybrid IT Files podcast and Vice President at CenturyLink, investigated three key trends of the “gigabit economy" though the story of a Fortune 500 communications company in transformation. Narrating how multi-modal hybrid IT, service automation, and agile delivery all intersect, he will cover the role of storytelling and empathy in achieving strategic alignment between the enterprise and its information technology.
Hardware virtualization and cloud computing allowed us to increase resource utilization and increase our flexibility to respond to business demand. Docker Containers are the next quantum leap - Are they?! Databases always represented an additional set of challenges unique to running workloads requiring a maximum of I/O, network, CPU resources combined with data locality.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Day 2 Keynote at 17th Cloud Expo, Sandy Ca...
In his session at DevOps Summit, Tapabrata Pal, Director of Enterprise Architecture at Capital One, will tell a story about how Capital One has embraced Agile and DevOps Security practices across the Enterprise – driven by Enterprise Architecture; bringing in Development, Operations and Information Security organizations together. Capital Ones DevOpsSec practice is based upon three "pillars" – Shift-Left, Automate Everything, Dashboard Everything. Within about three years, from 100% waterfall, C...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place June 6-8, 2017, at the Javits Center in New York City, New York, is co-located with 20th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry p...
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
Providing secure, mobile access to sensitive data sets is a critical element in realizing the full potential of cloud computing. However, large data caches remain inaccessible to edge devices for reasons of security, size, format or limited viewing capabilities. Medical imaging, computer aided design and seismic interpretation are just a few examples of industries facing this challenge. Rather than fighting for incremental gains by pulling these datasets to edge devices, we need to embrace the i...
Internet of @ThingsExpo, taking place June 6-8, 2017 at the Javits Center in New York City, New York, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @ThingsExpo New York Call for Papers is now open.
SYS-CON Events announced today that Dataloop.IO, an innovator in cloud IT-monitoring whose products help organizations save time and money, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Dataloop.IO is an emerging software company on the cutting edge of major IT-infrastructure trends including cloud computing and microservices. The company, founded in the UK but now based in San Fran...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
When you focus on a journey from up-close, you look at your own technical and cultural history and how you changed it for the benefit of the customer. This was our starting point: too many integration issues, 13 SWP days and very long cycles. It was evident that in this fast-paced industry we could no longer afford this reality. We needed something that would take us beyond reducing the development lifecycles, CI and Agile methodologies. We made a fundamental difference, even changed our culture...
Things are changing so quickly in IoT that it would take a wizard to predict which ecosystem will gain the most traction. In order for IoT to reach its potential, smart devices must be able to work together. Today, there are a slew of interoperability standards being promoted by big names to make this happen: HomeKit, Brillo and Alljoyn. In his session at @ThingsExpo, Adam Justice, vice president and general manager of Grid Connect, will review what happens when smart devices don’t work togethe...
"We formed Formation several years ago to really address the need for bring complete modernization and software-defined storage to the more classic private cloud marketplace," stated Mark Lewis, Chairman and CEO of Formation Data Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.