Click here to close now.




















Welcome!

News Feed Item

Tissue development 'roadmap' created to guide stem cell medicine

Computer algorithm also provides 'quality assurance' for lab-created cells

BOSTON, Aug. 14, 2014 /PRNewswire-USNewswire/ -- In a boon to stem cell research and regenerative medicine, scientists at Boston Children's Hospital, the Wyss Institute for Biologically Inspired Engineering at Harvard University and Boston University have created a computer algorithm called CellNet as a "roadmap" for cell and tissue engineering, to ensure that cells engineered in the lab have the same favorable properties as cells in our own bodies. CellNet and its application to stem cell engineering are described in two back-to-back papers in the August 14 issue of the journal Cell.

Scientists around the world are engaged in culturing pluripotent stem cells (capable of forming all the body's tissues) and transforming them into specialized cell types for use in research and regenerative medicine. Available as an Internet resource for any scientist to use, CellNet provides a much needed "quality assurance" measure for this work.

The two papers also clarify uncertainty around which methods are best for stem cell engineering, and should advance the use of cells derived from patient tissues to model disease, test potential drugs and use as treatments. For example, using CellNet, one of the studies unexpectedly found that skin cells can be converted into intestinal cells that were able to reverse colitis in a mouse model.

"To date, there has been no systematic means of assessing the fidelity of cellular engineering—to determine how closely cells made in a petri dish approximate natural tissues in the body," says George Q. Daley, MD, PhD, Director of the Stem Cell Transplantation Program at Boston Children's and senior investigator on both studies. "CellNet was developed to assess the quality of engineered cells and to identify ways to improve their performance."

Gene signatures

CellNet applies network biology to discover the complex network of genes that are turned on or off in an engineered cell, known as the cell's Gene Regulatory Network or GRN. It then compares that network to the cell's real-life counterpart in the body, as determined from public genome databases. Through this comparison, researchers can rigorously and reliably assess:

  • the quality of induced pluripotent stem cells (iPS cells) made by reprogramming blood cells or skin cells
  • the quality of specialized cells—such as liver, heart, muscle, brain or blood cells—made from either iPS cells or embryonic stem cells
  • the quality of specialized cells made from other specialized cells (such as liver cells made directly from skin cells)
  • what specific improvements need to be made to the engineering process.

"CellNet will also be a powerful tool to advance synthetic biology—to engineer cells for specific medical applications," says James Collins, PhD, Core Faculty member at the Wyss Institute and the William F. Warren Distinguished Professor at Boston University, co-senior investigator on one of the studies.

Putting CellNet to the test

The researchers—including co-first authors Patrick Cahan, PhD and Samantha Morris, PhD, of Boston Children's, and Hu Li, PhD, of the Mayo Clinic, first used CellNet to assess the quality of eight kinds of cells created in 56 published studies.

In a second study, they applied CellNet's teachings to a recurring question in stem cell biology: Is it feasible to directly convert one specialized cell type to another, bypassing the laborious process of first creating an iPS cell? This study looked at two kinds of directly converted cells: liver cells made from skin cells, and macrophages made from B cells.

"Most attempts to directly convert one specialized cell type to another have depended on a trial and error approach," notes Cahan, principle architect of CellNet and a post-doctoral scientist in the Daley lab. "Until now, quality control metrics for engineered cells have not gotten to the core defining features of a cell type."

In both test cases, CellNet showed that the engineered cells hadn't completely converted, retaining some characteristics of their cells of origin—but pointed to specific genetic tweaks that could be done in the lab to fix the problem.

CellNet also pointed out some useful properties that weren't apparent before. "We found that liver-like cells made from mouse skin were actually more like intestinal cells," says Morris. "In fact, the converted skin cells could engraft into mice with inflammatory bowel disease—Crohn's or ulcerative colitis. After a short time, the cells became highly similar to native colon cells and assisted healing of the damaged tissue, a finding that surprised and excited us."

Guidance for stem cell engineering

Together, the two studies establish some general principles for stem cell science:

1) The GRN of iPS cells created by reprogramming a mature cell is nearly identical to that of stem cells made from embryos, confirming that iPS cells are a good raw material for creating specialized cells.

2) Once engineered cells are engrafted into laboratory mice, their GRN becomes even closer to that of the true target tissue, indicating that the body's own tissues contribute signals to enhance the performance of transplanted cells.

3) Differentiating pluripotent stem cells into specific tissues is currently more effective than attempting to convert one specialized cell directly to another, creating cells whose GRNs are much like those of cells in the body.

4) Most specialized cells made from other specialized cells retain some "memory" of their cell of origin, making them less than ideal for certain uses but better for others.

Supporters of the studies include the National Institutes of Health (grant #s R24DK092760, UO1-HL100001, P50HG005550, 1K01DK096013, 2T32HL06698, 5T32HL007623 and R01DK082889), the National Institute of Diabetes and Digestive and Kidney Diseases (K01DK096013), the National Heart, Lung, and Blood Institute (T32HL066987 and T32HL007623), the Children's Hospital Stem Cell Program, the Howard Hughes Medical Institute, Alex's Lemonade Stand Foundation, the Mayo Clinic, the Ellison Medical Foundation and the Doris Duke Medical Foundation.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 14 members of the Institute of Medicine and 14 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School.

For more information about research and clinical innovation at BCH visit: http://vectorblog.org
Join the social discussion and tweet us @BostonChildrens
Follow BCH on Facebook: http://on.bchil.org/1mJ9fxf
Follow BCH on Youtube: http://on.bchil.org/1oJib5B  

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among all of Harvard's Schools, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, and the University of Zurich, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

The Boston University College of Engineering offers a wide range of undergraduate, graduate and professional degrees in foundational and emerging engineering disciplines. Underlying the College's educational efforts is its commitment to creating Societal Engineers who have an appreciation for how the engineer's unique skills can be used to improve our quality of life. Ranked among the nation's best engineering research institutions, the College's faculty attracts more than $50 million in external research support annually.

CONTACTS:
Kristen Dattoli
Boston Children's Hospital
617-919-3110
[email protected]

Kristen Kusek
Wyss Institute for Biologically Inspired Engineering
617-432-8266
[email protected]

SOURCE Boston Children's Hospital

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Learn how to solve the problem of keeping files in sync between multiple Docker containers. In his session at 16th Cloud Expo, Aaron Brongersma, Senior Infrastructure Engineer at Modulus, discussed using rsync, GlusterFS, EBS and Bit Torrent Sync. He broke down the tools that are needed to help create a seamless user experience. In the end, can we have an environment where we can easily move Docker containers, servers, and volumes without impacting our applications? He shared his results so yo...
Palerra, the cloud security automation company, announced enhanced support for Amazon AWS, allowing IT security and DevOps teams to automate activity and configuration monitoring, anomaly detection, and orchestrated remediation, thereby meeting compliance mandates within complex infrastructure deployments. "Monitoring and threat detection for AWS is a non-trivial task. While Amazon's flexible environment facilitates successful DevOps implementations, it adds another layer, which can become a ...
With SaaS use rampant across organizations, how can IT departments track company data and maintain security? More and more departments are commissioning their own solutions and bypassing IT. A cloud environment is amorphous and powerful, allowing you to set up solutions for all of your user needs: document sharing and collaboration, mobile access, e-mail, even industry-specific applications. In his session at 16th Cloud Expo, Shawn Mills, President and a founder of Green House Data, discussed h...
The Software Defined Data Center (SDDC), which enables organizations to seamlessly run in a hybrid cloud model (public + private cloud), is here to stay. IDC estimates that the software-defined networking market will be valued at $3.7 billion by 2016. Security is a key component and benefit of the SDDC, and offers an opportunity to build security 'from the ground up' and weave it into the environment from day one. In his session at 16th Cloud Expo, Reuven Harrison, CTO and Co-Founder of Tufin,...
SYS-CON Events announced today that MobiDev, a software development company, will exhibit at the 17th International Cloud Expo®, which will take place November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MobiDev is a software development company with representative offices in Atlanta (US), Sheffield (UK) and Würzburg (Germany); and development centers in Ukraine. Since 2009 it has grown from a small group of passionate engineers and business managers to a full-scale mobi...
There are many considerations when moving applications from on-premise to cloud. It is critical to understand the benefits and also challenges of this migration. A successful migration will result in lower Total Cost of Ownership, yet offer the same or higher level of robustness. In his session at 15th Cloud Expo, Michael Meiner, an Engineering Director at Oracle, Corporation, analyzed a range of cloud offerings (IaaS, PaaS, SaaS) and discussed the benefits/challenges of migrating to each offe...
Chuck Piluso presented a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. Prior to Secure Infrastructure and Services, Mr. Piluso founded North American Telecommunication Corporation, a facilities-based Competitive Local Exchange Carrier licensed by the Public Service Commission in 10 states, serving as the company's chairman and president from 1997 to 2000. Between 1990 and 1997, Mr. Piluso served as chairman & founder of International Te...
Mobile, social, Big Data, and cloud have fundamentally changed the way we live. “Anytime, anywhere” access to data and information is no longer a luxury; it’s a requirement, in both our personal and professional lives. For IT organizations, this means pressure has never been greater to deliver meaningful services to the business and customers.
In their session at 17th Cloud Expo, Hal Schwartz, CEO of Secure Infrastructure & Services (SIAS), and Chuck Paolillo, CTO of Secure Infrastructure & Services (SIAS), provide a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. In his role as CEO of Secure Infrastructure & Services (SIAS), Hal Schwartz provides leadership and direction for the company.
In a recent research, analyst firm IDC found that the average cost of a critical application failure is $500,000 to $1 million per hour and the average total cost of unplanned application downtime is $1.25 billion to $2.5 billion per year for Fortune 1000 companies. In addition to the findings on the cost of the downtime, the research also highlighted best practices for development, testing, application support, infrastructure, and operations teams.
Puppet Labs has announced the next major update to its flagship product: Puppet Enterprise 2015.2. This release includes new features providing DevOps teams with clarity, simplicity and additional management capabilities, including an all-new user interface, an interactive graph for visualizing infrastructure code, a new unified agent and broader infrastructure support.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducte...
Container technology is sending shock waves through the world of cloud computing. Heralded as the 'next big thing,' containers provide software owners a consistent way to package their software and dependencies while infrastructure operators benefit from a standard way to deploy and run them. Containers present new challenges for tracking usage due to their dynamic nature. They can also be deployed to bare metal, virtual machines and various cloud platforms. How do software owners track the usag...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
Providing the needed data for application development and testing is a huge headache for most organizations. The problems are often the same across companies - speed, quality, cost, and control. Provisioning data can take days or weeks, every time a refresh is required. Using dummy data leads to quality problems. Creating physical copies of large data sets and sending them to distributed teams of developers eats up expensive storage and bandwidth resources. And, all of these copies proliferating...