Welcome!

News Feed Item

Tissue development 'roadmap' created to guide stem cell medicine

Computer algorithm also provides 'quality assurance' for lab-created cells

BOSTON, Aug. 14, 2014 /PRNewswire-USNewswire/ -- In a boon to stem cell research and regenerative medicine, scientists at Boston Children's Hospital, the Wyss Institute for Biologically Inspired Engineering at Harvard University and Boston University have created a computer algorithm called CellNet as a "roadmap" for cell and tissue engineering, to ensure that cells engineered in the lab have the same favorable properties as cells in our own bodies. CellNet and its application to stem cell engineering are described in two back-to-back papers in the August 14 issue of the journal Cell.

Scientists around the world are engaged in culturing pluripotent stem cells (capable of forming all the body's tissues) and transforming them into specialized cell types for use in research and regenerative medicine. Available as an Internet resource for any scientist to use, CellNet provides a much needed "quality assurance" measure for this work.

The two papers also clarify uncertainty around which methods are best for stem cell engineering, and should advance the use of cells derived from patient tissues to model disease, test potential drugs and use as treatments. For example, using CellNet, one of the studies unexpectedly found that skin cells can be converted into intestinal cells that were able to reverse colitis in a mouse model.

"To date, there has been no systematic means of assessing the fidelity of cellular engineering—to determine how closely cells made in a petri dish approximate natural tissues in the body," says George Q. Daley, MD, PhD, Director of the Stem Cell Transplantation Program at Boston Children's and senior investigator on both studies. "CellNet was developed to assess the quality of engineered cells and to identify ways to improve their performance."

Gene signatures

CellNet applies network biology to discover the complex network of genes that are turned on or off in an engineered cell, known as the cell's Gene Regulatory Network or GRN. It then compares that network to the cell's real-life counterpart in the body, as determined from public genome databases. Through this comparison, researchers can rigorously and reliably assess:

  • the quality of induced pluripotent stem cells (iPS cells) made by reprogramming blood cells or skin cells
  • the quality of specialized cells—such as liver, heart, muscle, brain or blood cells—made from either iPS cells or embryonic stem cells
  • the quality of specialized cells made from other specialized cells (such as liver cells made directly from skin cells)
  • what specific improvements need to be made to the engineering process.

"CellNet will also be a powerful tool to advance synthetic biology—to engineer cells for specific medical applications," says James Collins, PhD, Core Faculty member at the Wyss Institute and the William F. Warren Distinguished Professor at Boston University, co-senior investigator on one of the studies.

Putting CellNet to the test

The researchers—including co-first authors Patrick Cahan, PhD and Samantha Morris, PhD, of Boston Children's, and Hu Li, PhD, of the Mayo Clinic, first used CellNet to assess the quality of eight kinds of cells created in 56 published studies.

In a second study, they applied CellNet's teachings to a recurring question in stem cell biology: Is it feasible to directly convert one specialized cell type to another, bypassing the laborious process of first creating an iPS cell? This study looked at two kinds of directly converted cells: liver cells made from skin cells, and macrophages made from B cells.

"Most attempts to directly convert one specialized cell type to another have depended on a trial and error approach," notes Cahan, principle architect of CellNet and a post-doctoral scientist in the Daley lab. "Until now, quality control metrics for engineered cells have not gotten to the core defining features of a cell type."

In both test cases, CellNet showed that the engineered cells hadn't completely converted, retaining some characteristics of their cells of origin—but pointed to specific genetic tweaks that could be done in the lab to fix the problem.

CellNet also pointed out some useful properties that weren't apparent before. "We found that liver-like cells made from mouse skin were actually more like intestinal cells," says Morris. "In fact, the converted skin cells could engraft into mice with inflammatory bowel disease—Crohn's or ulcerative colitis. After a short time, the cells became highly similar to native colon cells and assisted healing of the damaged tissue, a finding that surprised and excited us."

Guidance for stem cell engineering

Together, the two studies establish some general principles for stem cell science:

1) The GRN of iPS cells created by reprogramming a mature cell is nearly identical to that of stem cells made from embryos, confirming that iPS cells are a good raw material for creating specialized cells.

2) Once engineered cells are engrafted into laboratory mice, their GRN becomes even closer to that of the true target tissue, indicating that the body's own tissues contribute signals to enhance the performance of transplanted cells.

3) Differentiating pluripotent stem cells into specific tissues is currently more effective than attempting to convert one specialized cell directly to another, creating cells whose GRNs are much like those of cells in the body.

4) Most specialized cells made from other specialized cells retain some "memory" of their cell of origin, making them less than ideal for certain uses but better for others.

Supporters of the studies include the National Institutes of Health (grant #s R24DK092760, UO1-HL100001, P50HG005550, 1K01DK096013, 2T32HL06698, 5T32HL007623 and R01DK082889), the National Institute of Diabetes and Digestive and Kidney Diseases (K01DK096013), the National Heart, Lung, and Blood Institute (T32HL066987 and T32HL007623), the Children's Hospital Stem Cell Program, the Howard Hughes Medical Institute, Alex's Lemonade Stand Foundation, the Mayo Clinic, the Ellison Medical Foundation and the Doris Duke Medical Foundation.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 14 members of the Institute of Medicine and 14 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School.

For more information about research and clinical innovation at BCH visit: http://vectorblog.org
Join the social discussion and tweet us @BostonChildrens
Follow BCH on Facebook: http://on.bchil.org/1mJ9fxf
Follow BCH on Youtube: http://on.bchil.org/1oJib5B  

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among all of Harvard's Schools, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, and the University of Zurich, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

The Boston University College of Engineering offers a wide range of undergraduate, graduate and professional degrees in foundational and emerging engineering disciplines. Underlying the College's educational efforts is its commitment to creating Societal Engineers who have an appreciation for how the engineer's unique skills can be used to improve our quality of life. Ranked among the nation's best engineering research institutions, the College's faculty attracts more than $50 million in external research support annually.

CONTACTS:
Kristen Dattoli
Boston Children's Hospital
617-919-3110
[email protected]

Kristen Kusek
Wyss Institute for Biologically Inspired Engineering
617-432-8266
[email protected]

SOURCE Boston Children's Hospital

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
All organizations that did not originate this moment have a pre-existing culture as well as legacy technology and processes that can be more or less amenable to DevOps implementation. That organizational culture is influenced by the personalities and management styles of Executive Management, the wider culture in which the organization is situated, and the personalities of key team members at all levels of the organization. This culture and entrenched interests usually throw a wrench in the work...
Cloud promises the agility required by today’s digital businesses. As organizations adopt cloud based infrastructures and services, their IT resources become increasingly dynamic and hybrid in nature. Managing these require modern IT operations and tools. In his session at 20th Cloud Expo, Raj Sundaram, Senior Principal Product Manager at CA Technologies, will discuss how to modernize your IT operations in order to proactively manage your hybrid cloud and IT environments. He will be sharing be...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory?
Building a cross-cloud operational model can be a daunting task. Per-cloud silos are not the answer, but neither is a fully generic abstraction plane that strips out capabilities unique to a particular provider. In his session at 20th Cloud Expo, Chris Wolf, VP & Chief Technology Officer, Global Field & Industry at VMware, will discuss how successful organizations approach cloud operations and management, with insights into where operations should be centralized and when it’s best to decentraliz...
SYS-CON Events announced today that T-Mobile will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on ...
@GonzalezCarmen has been ranked the Number One Influencer and @ThingsExpo has been named the Number One Brand in the “M2M 2016: Top 100 Influencers and Brands” by Analytic. Onalytica analyzed tweets over the last 6 months mentioning the keywords M2M OR “Machine to Machine.” They then identified the top 100 most influential brands and individuals leading the discussion on Twitter.
In recent years, containers have taken the world by storm. Companies of all sizes and industries have realized the massive benefits of containers, such as unprecedented mobility, higher hardware utilization, and increased flexibility and agility; however, many containers today are non-persistent. Containers without persistence miss out on many benefits, and in many cases simply pass the responsibility of persistence onto other infrastructure, adding additional complexity.
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
SYS-CON Events announced today that Juniper Networks (NYSE: JNPR), an industry leader in automated, scalable and secure networks, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Juniper Networks challenges the status quo with products, solutions and services that transform the economics of networking. The company co-innovates with customers and partners to deliver automated, scalable and secure network...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In his Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, will explore t...
Five years ago development was seen as a dead-end career, now it’s anything but – with an explosion in mobile and IoT initiatives increasing the demand for skilled engineers. But apart from having a ready supply of great coders, what constitutes true ‘DevOps Royalty’? It’ll be the ability to craft resilient architectures, supportability, security everywhere across the software lifecycle. In his keynote at @DevOpsSummit at 20th Cloud Expo, Jeffrey Scheaffer, GM and SVP, Continuous Delivery Busine...
SYS-CON Events announced today that CA Technologies has been named "Platinum Sponsor" of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, New York, and 21st International Cloud Expo, which will take place in November in Silicon Valley, California.
Back in February of 2017, Andrew Clay Schafer of Pivotal tweeted the following: “seriously tho, the whole software industry is stuck on deployment when we desperately need architecture and telemetry.” Intrigue in a 140 characters. For me, I hear Andrew saying, “we’re jumping to step 5 before we’ve successfully completed steps 1-4.”
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists will examine how DevOps helps to meet th...