Welcome!

News Feed Item

Tissue development 'roadmap' created to guide stem cell medicine

Computer algorithm also provides 'quality assurance' for lab-created cells

BOSTON, Aug. 14, 2014 /PRNewswire-USNewswire/ -- In a boon to stem cell research and regenerative medicine, scientists at Boston Children's Hospital, the Wyss Institute for Biologically Inspired Engineering at Harvard University and Boston University have created a computer algorithm called CellNet as a "roadmap" for cell and tissue engineering, to ensure that cells engineered in the lab have the same favorable properties as cells in our own bodies. CellNet and its application to stem cell engineering are described in two back-to-back papers in the August 14 issue of the journal Cell.

Scientists around the world are engaged in culturing pluripotent stem cells (capable of forming all the body's tissues) and transforming them into specialized cell types for use in research and regenerative medicine. Available as an Internet resource for any scientist to use, CellNet provides a much needed "quality assurance" measure for this work.

The two papers also clarify uncertainty around which methods are best for stem cell engineering, and should advance the use of cells derived from patient tissues to model disease, test potential drugs and use as treatments. For example, using CellNet, one of the studies unexpectedly found that skin cells can be converted into intestinal cells that were able to reverse colitis in a mouse model.

"To date, there has been no systematic means of assessing the fidelity of cellular engineering—to determine how closely cells made in a petri dish approximate natural tissues in the body," says George Q. Daley, MD, PhD, Director of the Stem Cell Transplantation Program at Boston Children's and senior investigator on both studies. "CellNet was developed to assess the quality of engineered cells and to identify ways to improve their performance."

Gene signatures

CellNet applies network biology to discover the complex network of genes that are turned on or off in an engineered cell, known as the cell's Gene Regulatory Network or GRN. It then compares that network to the cell's real-life counterpart in the body, as determined from public genome databases. Through this comparison, researchers can rigorously and reliably assess:

  • the quality of induced pluripotent stem cells (iPS cells) made by reprogramming blood cells or skin cells
  • the quality of specialized cells—such as liver, heart, muscle, brain or blood cells—made from either iPS cells or embryonic stem cells
  • the quality of specialized cells made from other specialized cells (such as liver cells made directly from skin cells)
  • what specific improvements need to be made to the engineering process.

"CellNet will also be a powerful tool to advance synthetic biology—to engineer cells for specific medical applications," says James Collins, PhD, Core Faculty member at the Wyss Institute and the William F. Warren Distinguished Professor at Boston University, co-senior investigator on one of the studies.

Putting CellNet to the test

The researchers—including co-first authors Patrick Cahan, PhD and Samantha Morris, PhD, of Boston Children's, and Hu Li, PhD, of the Mayo Clinic, first used CellNet to assess the quality of eight kinds of cells created in 56 published studies.

In a second study, they applied CellNet's teachings to a recurring question in stem cell biology: Is it feasible to directly convert one specialized cell type to another, bypassing the laborious process of first creating an iPS cell? This study looked at two kinds of directly converted cells: liver cells made from skin cells, and macrophages made from B cells.

"Most attempts to directly convert one specialized cell type to another have depended on a trial and error approach," notes Cahan, principle architect of CellNet and a post-doctoral scientist in the Daley lab. "Until now, quality control metrics for engineered cells have not gotten to the core defining features of a cell type."

In both test cases, CellNet showed that the engineered cells hadn't completely converted, retaining some characteristics of their cells of origin—but pointed to specific genetic tweaks that could be done in the lab to fix the problem.

CellNet also pointed out some useful properties that weren't apparent before. "We found that liver-like cells made from mouse skin were actually more like intestinal cells," says Morris. "In fact, the converted skin cells could engraft into mice with inflammatory bowel disease—Crohn's or ulcerative colitis. After a short time, the cells became highly similar to native colon cells and assisted healing of the damaged tissue, a finding that surprised and excited us."

Guidance for stem cell engineering

Together, the two studies establish some general principles for stem cell science:

1) The GRN of iPS cells created by reprogramming a mature cell is nearly identical to that of stem cells made from embryos, confirming that iPS cells are a good raw material for creating specialized cells.

2) Once engineered cells are engrafted into laboratory mice, their GRN becomes even closer to that of the true target tissue, indicating that the body's own tissues contribute signals to enhance the performance of transplanted cells.

3) Differentiating pluripotent stem cells into specific tissues is currently more effective than attempting to convert one specialized cell directly to another, creating cells whose GRNs are much like those of cells in the body.

4) Most specialized cells made from other specialized cells retain some "memory" of their cell of origin, making them less than ideal for certain uses but better for others.

Supporters of the studies include the National Institutes of Health (grant #s R24DK092760, UO1-HL100001, P50HG005550, 1K01DK096013, 2T32HL06698, 5T32HL007623 and R01DK082889), the National Institute of Diabetes and Digestive and Kidney Diseases (K01DK096013), the National Heart, Lung, and Blood Institute (T32HL066987 and T32HL007623), the Children's Hospital Stem Cell Program, the Howard Hughes Medical Institute, Alex's Lemonade Stand Foundation, the Mayo Clinic, the Ellison Medical Foundation and the Doris Duke Medical Foundation.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 14 members of the Institute of Medicine and 14 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School.

For more information about research and clinical innovation at BCH visit: http://vectorblog.org
Join the social discussion and tweet us @BostonChildrens
Follow BCH on Facebook: http://on.bchil.org/1mJ9fxf
Follow BCH on Youtube: http://on.bchil.org/1oJib5B  

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among all of Harvard's Schools, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, and the University of Zurich, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

The Boston University College of Engineering offers a wide range of undergraduate, graduate and professional degrees in foundational and emerging engineering disciplines. Underlying the College's educational efforts is its commitment to creating Societal Engineers who have an appreciation for how the engineer's unique skills can be used to improve our quality of life. Ranked among the nation's best engineering research institutions, the College's faculty attracts more than $50 million in external research support annually.

CONTACTS:
Kristen Dattoli
Boston Children's Hospital
617-919-3110
[email protected]

Kristen Kusek
Wyss Institute for Biologically Inspired Engineering
617-432-8266
[email protected]

SOURCE Boston Children's Hospital

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addres...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management solutions, helping companies worldwide activate their data to drive more value and business insight and to transform moder...
SYS-CON Events announced today that eCube Systems, a leading provider of middleware modernization, integration, and management solutions, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. eCube Systems offers a family of middleware evolution products and services that maximize return on technology investment by leveraging existing technical equity to meet evolving business needs. ...
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will look at the protocols that communicate data and the emerging data analy...
Fifty billion connected devices and still no winning protocols standards. HTTP, WebSockets, MQTT, and CoAP seem to be leading in the IoT protocol race at the moment but many more protocols are getting introduced on a regular basis. Each protocol has its pros and cons depending on the nature of the communications. Does there really need to be only one protocol to rule them all? Of course not. In his session at @ThingsExpo, Chris Matthieu, co-founder and CTO of Octoblu, walk you through how Oct...
We’ve been doing it for years, decades for some. How many websites have you created accounts on? Your bank, your credit card companies, social media sites, hotels and travel sites, online shopping sites, and that’s just the start. We do it often without even thinking about it, quickly entering our personal information, our data, in a plethora of systems. Sometimes we’re not even aware of the information we are providing. It could be very personal information (think of the security questions you ...
Digital innovation is the next big wave of business transformation based on digital technologies of which IoT and Big Data are key components, For example: Business boundary innovation is a challenge to excavate third-party business value using IoT and BigData, like Nest Business structure innovation may propose re-building business structure from scratch, as Uber does in the taxicab industry The social model innovation is also a big challenge to the new social architecture with the design fr...
Complete Internet of Things (IoT) embedded device security is not just about the device but involves the entire product’s identity, data and control integrity, and services traversing the cloud. A device can no longer be looked at as an island; it is a part of a system. In fact, given the cross-domain interactions enabled by IoT it could be a part of many systems. Also, depending on where the device is deployed, for example, in the office building versus a factory floor or oil field, security ha...
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of So...
SYS-CON Events announced today that Niagara Networks will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Niagara Networks offers the highest port-density systems, and the most complete Next-Generation Network Visibility systems including Network Packet Brokers, Bypass Switches, and Network TAPs.
Data is an unusual currency; it is not restricted by the same transactional limitations as money or people. In fact, the more that you leverage your data across multiple business use cases, the more valuable it becomes to the organization. And the same can be said about the organization’s analytics. In his session at 19th Cloud Expo, Bill Schmarzo, CTO for the Big Data Practice at EMC, will introduce a methodology for capturing, enriching and sharing data (and analytics) across the organizati...
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...
IoT is fundamentally transforming the auto industry, turning the vehicle into a hub for connected services, including safety, infotainment and usage-based insurance. Auto manufacturers – and businesses across all verticals – have built an entire ecosystem around the Connected Car, creating new customer touch points and revenue streams. In his session at @ThingsExpo, Macario Namie, Head of IoT Strategy at Cisco Jasper, will share real-world examples of how IoT transforms the car from a static p...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Tintri VM-aware storage is the simplest for virtualized applications and cloud. Organizations including GE, Toyota, United Healthcare, NASA and 6 of the Fortune 15 have said “No to LUNs.” With Tintri they mana...