Welcome!

News Feed Item

Graphene materials for opto & electronic applications

NEW YORK, Aug. 18, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Graphene materials for opto & electronic applications

http://www.reportlinker.com/p02105845/Graphene-materials-for-opto--electronic-applications.html

What is the industrial potential behind the graphene academic R&D hype?

$141M GRAPHENE MATERIALS MARKET IN 2024 WILL BE DRIVEN MAINLY BY TRANSPARENT CONDUCTIVE ELECTRODES AND ENERGY STORAGE APPLICATIONS

Graphene is a two-dimensional (2D) material with exceptional properties, such as ultrahigh electrical and thermal conductivities, wide-range optical transmittance and excellent mechanical strength and flexibility. These properties make it a promising material for emerging and existing applications in printed & flexible circuitry, ultrafast transistors, touch screens, advanced batteries and supercapacitors, ultrafast lasers, photodetectors and many other non-electronic applications.

Although graphene technology is still in its infancy, remarkable progress has been made in the last few years developing graphene production methods. Numerous opto and electronic devices based on graphene have been demonstrated on lab-scale models. However, the numerous challenges of graphene technology should not be underestimated. The lack of bandgap in graphene is its key fundamental challenge. Other technology challenges are related to the development of industrial methods to produce graphene with high and consistent quality at acceptable costs.

Although today there is no graphene-based electronic application in mass production, several companies already offer commercially graphene materials. The graphene material market value in 2013 was about $11 million, represented principally by the demand for the R&D and prototyping. Two scenarios for the future market growth are presented in the report. According to the base scenario, the global annual market value for graphene materials in opto and electronic applications will reach $141 million in 2024, featuring a 2013-2019 CAGR of 18.5%. Accelerated market growth is expected after 2019, with a 2019-2024 CAGR of 35.7%. In 2024, the graphene material market will be represented mainly by the demand for transparent conductive electrodes and advanced batteries and supercapacitors.

HOW CAN GRAPHENE TECHNOLOGY CHALLENGES AND APPLICATION POTENTIAL BE TRANSFORMED INTO BUSINESS OPPORTUNITIES?

In order to reach the best possible performance on lab-scale devices, high quality materials are required. Material suppliers able to consistently deliver high-quality materials have a competitive advantage on the graphene market.

The booming interest in graphene technologies has led to a high demand on graphene equipment. As shown in the report, CVD equipment makers today mainly focus on the R&D equipment used to produce high-quality graphene.

The leading device manufacturers are currently evaluating the graphene technology potential; most of them have internal R&D activities or are developing R&D partnerships with graphene material suppliers. But today's graphene supply chain is widely dispersed and makes choosing the right supplier difficult. A large (and growing) number of start-up companies are looking to catch graphene market opportunities in their initial stage. Securing graphene IP is crucial to a strong competitive position. As detailed in the report, strong vertical integration trends within the supply chain are expected, due to specific challenges in production and the handling of graphene materials, namely CVD-made graphene sheets. The manufacturers of graphene nanoplatelets will also vertically integrate to gain a higher product value and better differentiation from competitors by offering application-specific materials, such as conductive inks and composite materials for graphene batteries and supercapacitors.

As pointed out in the report, many different graphene material types and quality levels exist. A higher level of standardization is therefore important in graphene technology, especially for the suppliers of high-quality graphene materials to differentiate better from other suppliers, and for companies with a long-term business strategy. The lack of suitable graphene quality characterization tools provides opportunities for companies developing specialized tools.

GRAPHENE MATERIALS: QUALITY, QUANTITY, REPRODUCIBILITY AND LOW COST NEEDED

The development and industrial production of new graphene applications require a reliable supply of graphene with consistently high quality.

Graphene materials can be produced as tiny flakes (nanoplatelets) or in the form of a large-size sheet on different substrates, such as a metal foil or silicon carbide (SiC).

The catalytic chemical vapor deposition (CVD) of graphene on metals, featuring the high potential for both scalability and high material quality, has the largest potential for mass production of graphene opto and electronic devices. Although the market potential of high-quality epitaxial graphene on SiC is limited by the dimensions and high costs of SiC wafers, it may be successfully applied to produce some high-end electronic applications. The nanoplatelets produced by different methods, such as liquid phase epitaxy or reduction of graphene oxide can be used to produce conductive inks for printed electronics and additive materials for energy storage devices, such as Li-ion batteries and supercapacitors.

The choice of the graphene production technique is of crucial importance to a device manufacturer because it influences not only the graphene size, quality and costs, but also the design of the production line for device manufacturing.

As shown in the report, it is possible today to produce large volumes of graphene materials at relatively low costs and also to produce the high-quality graphene. The main challenge is to satisfy both conditions simultaneously…

KEY FEATURES OF THE REPORT

Overview of main opto and electronic applications of graphene materials (printed & flexible circuitry, semi electronic devices, transparent conductive electrodes, energy storage devices, photonic devices)

Detailed analysis of different graphene materials, their characteristics and manufacturing processes

2013-2024 graphene material market forecast (in $M) - Two scenarios
Overview of main R&D players, graphene CVD equipment makers, material suppliers and relationships within the value chain

Focus on the key R&D topics
Company profiles of main players

OBJECTIVES OF THE REPORT

To guide strategic decisions concerning the R&D development and business activities of the technology, especially pertaining to applications with a strong market potential but also numerous challenges.

To provide an overview of opto and electronic applications in which graphene can provide a high proposition value regarding the device performance, novel functionalities or costs.

To identify the most promising graphene materials and their manufacturing processes.

To describe the key drivers for the development of graphene and to understand the specificities of graphene technology and its complexity.

To provide an overview of the main R&D players, equipment makers and materials suppliers.

LIST OF COMPANIES AND R&D INSTITUTIONS (non-exhaustive list)

2D-Tech, AIXTRON, AMO, Angstron Materials, Annealsys, Applied Graphene Materials, Bluestone Global Tech, Cabot, CalBattery, CEA, CrayoNano SA, CVD Equipment, Graphene Laboratories, Graphene Platform, Cambridge Graphene Platform, Graphene Square, Graphene Works, Graphenea, Graphensic, Gwangju Institute of Science and Technology, Haydale, IBM, IEMN, IMEC, Intel, ITME, Chalmers University of Technology, LG, Lomiko Metals, Mason Graphite, Nano Carbon, NanoXplore, National University of Singapore, Nokia, Oerlikon Leybold Vacuum, Plasmionique, Pohang University, Princeton University, Samsung, PNNL, SHT Smart High Tech, Texas Instruments, Thales, Thomas Swan, UC Santa Barbara, UCLA, University of Exeter, University of Manchester, University of Oxford, VG Scienta, Vorbeck Materials, XG Sciences…
Glossary 6
Executive summary 8
Introduction 35
Noteworthy news 37
Introduction to graphene material 40
Graphene at a glance
Why is graphene so interesting?
(Defect-free) graphene = excellent material!
Barries/challenges to exploitation of graphene
Monolayer vs. multilayer graphene-material
Graphene applications 48
Overview of potential graphene applications
Scope of the report
Printed & flexible circuiry 51
Semiconductor electronic devices 53
Graphene-based electronic devices
Seamless integration of graphene-based interconnects in electronic devices
Grat-FET™ Graphene Field-Effect Transistors from Bluestone Global Tech
Graphene-based flexible electronics
Transparent Conductive Electrodes (TCE) 61
Transparent conducting films
Sheet resistance required for different applications
Potential applications of graphene as transparent conductive electrodes
Samsung's, LG's and Nokia's concepts for flexible devices
TCE process flow at Samsung Techwin
Key requirements on transparent electrode material
Sheet resistance required for different applications
Why a substitution for ITO is researched?
Comparison of different materials used for transparent electrodes
Requirements and available graphene products for flexible transparent conductive electrodes
How to increase the graphene potential for transparent conductive electrode?
Combined graphene-based materials for transparent conductive electrodes
Graphene transparent conductive electrode for e-paper / LEDs / UV LED / solar cells
Graphene-based solar cells
Energy storage devices 80
Graphene-based energy storage devices
Graphene-based supercapacitor
Laser scribed graphene supercapacitors at UCLA
Graphene-based Li-ion batteries
Grat-Power™ SiGP Li-ion battery anode material
Photonic devices 86
Graphene applications in photonic devices
Graphene-based photodetectors
Overview of graphene materials
Graphite at a glance
Graphene type does matter
Examples of commercially available graphene materials
CVD graphene domains
Does graphene present a risk for human health or for environment?
Other 2D materials
Other applications
Thermal management using graphene
Two approaches for graphene-based thermal dissipation
Production of graphene materials 97
Take away
High-volume cost-effective high-quality graphene production needed
Production of graphene materials
Graphene production methods, materials produced and their applications
Graphene obtained by different methods
How to get the large-size graphene layers?
Two main approaches to obtain large-size graphene layers
Comparison of the main methods for obtaining graphene films
Quality vs. costs
Graphene materials & applications
Overview of graphene production methods
How to use graphene in different applications?
Graphene handling
Graphene transfer from growth substrate to a new substrate suitable for applications
CVD graphene transfer - Wet etching dry transfer
CVD graphene transfer Graphene on foil vs. Graphene on wafer
Face-to-face graphene transfer
Opening graphene bandgap
Graphene doping, patterning, functionalization
Graphene costs 125
Costs of graphene materials
Factors influencing graphene cost
ASP of different graphene materials
Technology improvements and mass production reduce the price of graphene
Main approaches to decrease the graphene costs
Graphene material market forecast 132
Graphene-based devices - Main drivers/challenges
"Standard-grade"and "Electronic-grade" graphene materials vs. production method
Comments about for the graphene material market forecast
Time-to-market for different graphene applications
2013-2024 market value for graphene materials (M$) - Base & accelerated scenarios
Graphene market forecast – Results
Supply chain 149
Graphene value chain overview
Equipment makers - Overview
Graphene CVD equipment makers - Split by CVD type: Thermal / Plasma
Graphene CVD equipment makers - R&D vs. industrial systems
Graphene CVD equipment makers - Geographical location
Aixtron R&D graphene equipment customers
Partnerships & relationships within the graphene value chain
Start-up companies and R&D in graphene
Natural graphite and HOPG suppliers
Graphene material suppliers - Split per material type
Industrial players involved in the development of graphene-based devices
Recent funding & IPO
Opportunities for non-graphene players
New opportunities: characterization and quality control tool makers
Graphene R&D 169
Graphene technology milestones
Graphene heats up the patent market
Graphene R&D - Introduction
Evolution of CVD graphene film size
Where to focus the graphene R&D efforts?
Main R&D approaches in graphene CVD
Graphene R&D funding
Organizations providing funding for graphene research
R&D projects related to graphene applications in opto & electronics
Main graphene R&D institutions split per geographical area
Graphene flagship (EU)
GRAPHeNE (ESP)
GDR Graphene and nanotubes network
The University of Manchester National Graphene Institute (UK)
Conclusions 187
26 company profiles 190

To order this report: Graphene materials for opto & electronic applications
http://www.reportlinker.com/p02105845/Graphene-materials-for-opto--electronic-applications.html

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and sh...
DevOps with IBMz? You heard right. Maybe you're wondering what a developer can do to speed up the entire development cycle--coding, testing, source code management, and deployment-? In this session you will learn about how to integrate z application assets into a DevOps pipeline using familiar tools like Jenkins and UrbanCode Deploy, plus z/OSMF workflows, all of which can increase deployment speeds while simultaneously improving reliability. You will also learn how to provision mainframe syste...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
Cell networks have the advantage of long-range communications, reaching an estimated 90% of the world. But cell networks such as 2G, 3G and LTE consume lots of power and were designed for connecting people. They are not optimized for low- or battery-powered devices or for IoT applications with infrequently transmitted data. Cell IoT modules that support narrow-band IoT and 4G cell networks will enable cell connectivity, device management, and app enablement for low-power wide-area network IoT. B...
Traditional on-premises data centers have long been the domain of modern data platforms like Apache Hadoop, meaning companies who build their business on public cloud were challenged to run Big Data processing and analytics at scale. But recent advancements in Hadoop performance, security, and most importantly cloud-native integrations, are giving organizations the ability to truly gain value from all their data. In his session at 19th Cloud Expo, David Tishgart, Director of Product Marketing ...
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term.
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
Jo Peterson is VP of Cloud Services for Clarify360, a boutique sourcing and benchmarking consultancy focused on transforming technology into business advantage. Clarify360 provides custom, end-to-end solutions from a portfolio of more than 170 suppliers globally. As an engineer, Jo sources net new technology footprints, and is an expert at optimizing and benchmarking existing environments focusing on Cloud Enablement and Optimization. She and her team work with clients on Cloud Discovery, Cloud ...
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
Transformation Abstract Encryption and privacy in the cloud is a daunting yet essential task for both security practitioners and application developers, especially as applications continue moving to the cloud at an exponential rate. What are some best practices and processes for enterprises to follow that balance both security and ease of use requirements? What technologies are available to empower enterprises with code, data and key protection from cloud providers, system administrators, inside...
With the proliferation of both SQL and NoSQL databases, organizations can now target specific fit-for-purpose database tools for their different application needs regarding scalability, ease of use, ACID support, etc. Platform as a Service offerings make this even easier now, enabling developers to roll out their own database infrastructure in minutes with minimal management overhead. However, this same amount of flexibility also comes with the challenges of picking the right tool, on the right ...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...