Welcome!

News Feed Item

Highland Copper Reports Initial Resource Estimate for the 543S Deposit, Upper Peninsula, Michigan

LONGUEUIL, QUEBEC -- (Marketwired) -- 08/25/14 -- Highland Copper Company Inc. (TSX VENTURE:HI) ("Highland" or the "Company") is pleased to announce an initial resource estimate for the 543S copper deposit part of the Keweenaw Project located in the Keweenaw Peninsula of Michigan's Upper Peninsula (see Figure 1).


              543S Project - Base Case - Underground Scenario               
                   Mineral Resource Estimate - July 5, 2014                 
                                                                            
----------------------------------------------------------------------------
                 Cut-Off                                                    
                   Grade              Grade Grade             Grade         
Resource         Cu Eq.    Tonnage   Cu Eq.   Cu     Copper      Ag   Silver
Category             (%)  ('000 t)      (%)   (%)('000 lbs)   (g/t)('000 oz)
----------------------------------------------------------------------------
Indicated            1.9     1,518     3.31  3.27   109,514     5.1      248
----------------------------------------------------------------------------
Inferred             1.9       193     3.12  3.08    13,116     4.8       30
----------------------------------------------------------------------------

Notes on Mineral Resources


1.  Cu Equivalent = Cu% + (Ag g/t (i) 20$/oz (i) 80% (i) 90%) / (22.0462
    lbs/10kg (i) 3$/lb (i) 31.1035 g/oz (i) 90% (i) 96.5%) 
2.  Mineral Resources are reported using a copper price of 3$/lb and a
    silver price of 20$/oz 
3.  A payable rate of 96.5% for copper and 90% for silver was assumed 
4.  Preliminary metallurgical testing suggests recovery of 90% for copper
    and 80% for silver 
5.  Cut-off grade of 1.9% Cu Eq. was used 
6.  Underground mining costs are estimated at 57.27$/t of ore 
7.  Production costs are estimated at 37.50$/t of ore: 12.00$/t for
    processing, 2.50$/t for general and administrative costs, 0.50$/t for
    tailings and 22.50$/t for ore transportation to White Pine Complex 
8.  A 5% royalty was used (4.99$/t ore) 
9.  No mining dilution and mining loss were considered for the Mineral
    Resources 
10. Rock bulk densities are based on rock types, %Cu and proximity to
    specific gravity measurements 
11. Assay capping was applied to some mineralized domains 
12. Classification of Mineral Resources conforms to CIM definitions 
13. The qualified person for the estimate is Mr. Rejean Sirois, eng., Vice
    President Geology and Resources of G Mining. The estimate has an
    effective date of July 5, 2014 
14. Mineral resources, which are not mineral reserves, do not have
    demonstrated economic viability. The estimate of mineral resources may
    be materially affected by environmental, permitting, legal, title,
    taxation, sociopolitical, marketing, or other relevant issues. 
15. The quantity and grade of reported inferred resources in this estimation
    are uncertain in nature and there has been insufficient exploration to
    define these inferred resources as indicated or measured mineral
    resources. 

The mineral resource estimate was prepared by G Mining Services Inc. ("G Mining"), a Canadian mining consulting firm. After a detailed review of different options, Highland and G Mining have opted to report the mineral resources for potential underground development of the 543S deposit. This initial mineral resource estimate for the 543S copper deposit is based on 262 diamond drill holes totaling 45,608 m, of which 220 are NQ size and 42 HQ size, on a drill grid spaced 30.5 by 15 m.

Selection of cut-off grades and base case resource estimate

The table below, prepared by G Mining, shows the sensitivity of constrained underground resource estimates to the cut-off grade for the 543S resource.


 Sensitivity of the 543S Project - Constrained Underground Mineral Resource 
                         Estimate by Cut-Off Grades                         
                                                                            
----------------------------------------------------------------------------
Cut Off Grade                                                               
% Cu Eq.                                Indicated                           
             ---------------------------------------------------------------
                                               Copper                 Silver
                                Grade       Contained   Grade      Contained
              Tonnage     Grade    Cu           ('000      Ag          ('000
             ('000 t) Cu Eq.(%)   (%)            lbs)   (g/t)            oz)
----------------------------------------------------------------------------
5.0%              163      6.21  6.16          22,166     7.1             37
----------------------------------------------------------------------------
4.5%              246      5.71  5.67          30,790     6.4             51
----------------------------------------------------------------------------
4.0%              364      5.24  5.20          41,748     6.1             71
----------------------------------------------------------------------------
3.5%              508      4.81  4.78          53,532     5.7             94
----------------------------------------------------------------------------
3.0%              715      4.36  4.32          68,101     5.4            126
----------------------------------------------------------------------------
2.5%              995      3.90  3.87          84,838     5.3            169
----------------------------------------------------------------------------
2.0%            1,406      3.41  3.38         104,817     5.1            231
----------------------------------------------------------------------------
1.9%            1,518      3.31  3.27         109,514     5.1            248
----------------------------------------------------------------------------
1.5%            2,070      2.87  2.84         129,809     4.8            320
----------------------------------------------------------------------------
1.0%            3,136      2.31  2.29         158,142     4.4            444
----------------------------------------------------------------------------
0.5%            4,993      1.72  1.70         187,130     3.9            621
----------------------------------------------------------------------------

 Sensitivity of the 543S Project - Constrained Underground Mineral Resource 
                         Estimate by Cut-Off Grades                         
                                                                            
----------------------------------------------------------------------------
Cut Off Grade                                                               
% Cu Eq.                                 Inferred                           
             ---------------------------------------------------------------
                                               Copper                 Silver
                                Grade       Contained   Grade      Contained
              Tonnage     Grade    Cu           ('000      Ag          ('000
             ('000 t) Cu Eq.(%)   (%)            lbs)   (g/t)            oz)
----------------------------------------------------------------------------
5.0%               14      5.87  5.83           1,776     5.2              2
----------------------------------------------------------------------------
4.5%               27      5.30  5.27           3,163     5.1              4
----------------------------------------------------------------------------
4.0%               41      4.96  4.93           4,464     5.0              7
----------------------------------------------------------------------------
3.5%               59      4.58  4.55           5,960     4.8              9
----------------------------------------------------------------------------
3.0%               82      4.21  4.18           7,533     4.6             12
----------------------------------------------------------------------------
2.5%              112      3.81  3.78           9,359     4.8             17
----------------------------------------------------------------------------
2.0%              173      3.24  3.21          12,290     4.8             27
----------------------------------------------------------------------------
1.9%              193      3.12  3.08          13,116     4.8             30
----------------------------------------------------------------------------
1.5%              332      2.52  2.49          18,256     4.2             45
----------------------------------------------------------------------------
1.0%              751      1.79  1.77          29,267     4.0             97
----------------------------------------------------------------------------
0.5%            1,493      1.25  1.23          40,616     3.2            152
----------------------------------------------------------------------------

Mineral Resource Estimate Methodology

G Mining undertook the Mineral Resource estimate based on data provided by Highland. The estimate was conducted in a block model limited by eighteen mineralized domains interpreted and modelled as 3D wireframes. Capped raw assays were composited into regular 2.5-meter run lengths within each domain. Isotropic cubic blocks of 2.5 meters were used in the block model. Bulk densities were first estimated in each block based on regressions calculated from the correlation of 1,100 specific gravity measurements with their copper content, for three major rock types (flow-tops, dyke and basalt/host rock). Secondly, blocks within a 50 meter radius from specific gravity measurements, within the same rock type, were interpolated using those samples and were given a higher priority. Resulting estimated specific gravity of blocks inside domains varies from 2.52 g/cm3 to 3.04 g/cm3. Overburden density was set to a uniform 2.35 g/cm3. Copper and silver grades were estimated using the Inverse Distance Cube (ID3) interpolation method in three successive passes, which led to Indicated and Inferred Resources, limited by mineralized domains. The underground scenario resources were constrained by blocks with a minimum threshold value of 1.9% Cu equivalent, where isolated clusters of blocks were removed and an upper hard boundary was set at 15 m below the bedrock surface. Mineral Resources were classified according to the CIM Definition Standards on Mineral Resources and Mineral Reserves.

Metallurgical Work

A.C.A. Howe International first completed historical preliminary metallurgical studies in 1991 at the Institute of Materials Processing of Michigan Technological University on three samples of chalcocite from the 543S deposit. Concentrate grades from conventional flotation tests demonstrated over 40% Cu and recoveries over 90% were achievable at grinds between 200 and 270 mesh when combined with cleaning and re-cleaning of the rougher concentrates. A ball mill grindability work index of a composite of 19.36 KWh/t was also reported.

In February 2014 seven flotation tests were conducted on composite samples of drill core from the 543S deposit at SGS Laboratories in Lakefield, Ontario under the supervision of Ahmed Bouajila, Vice President, Metallurgy and Ore Processing for G Mining. The composite grade was 2.61% Cu and 3.9 g/t Ag. Copper recoveries reported for this work neglect the copper distribution contained in the cleaner tailings. In a continuous circuit the cleaner tailings would be re-circulated back to the rougher and cleaner flotation stages, respectively and a substantial part of it would be recovered in the final concentrate. The effect of this recirculation cannot be determined without running locked cycle tests or continuous pilot plant trials. It is concluded that reasonable expectation from an equivalent optimized and closed circuit would be:


--  Recoveries: 90% Cu, 80% Ag; 
--  Concentrate grades: 44%Cu, 59g/t Ag ; and 
--  Mass Pull: 5.5%. 

Those numbers are used for the base case reported in this news release.

Geology of the 543S Deposit.

The 543S copper deposit is located within a zone of chalcocite-dominated copper mineralization that is unique to the Keweenaw Peninsula. The known chalcocite deposits in the Keweenaw region occur in a 30 kilometer long northeast-southwest trending belt located between the native copper-bearing lodes and the underlying Keweenaw Fault and hosted by the Portage Lake Lava series. Chalcocite mineralization primarily occurs as open space fillings in amygdaloidal and fragmental basalt flow tops. Historically, this type of mineralization has not been a major exploration target. The 543S deposit is the largest chalcocite occurrence found to date.

The basalt flows in the area of the 543S deposit are covered by up to 50 meters of glacial till and do not outcrop in the vicinity of the deposit. The flows have an average thickness of approximately 33 meters and are cut by two fine grained sill-like dacitic to andesitic subvolcanic intrusives (see Fig. 2). At the 543S copper deposit, more than 99% of the copper occurs in the mineral chalcocite and less than 1% is present as bornite, chalcopyrite, or as native copper. Traces of native silver are also present. Approximately 80 to 90% of chalcocite mineralization is concentrated in flow top breccias and amygdaloids where grades are the highest.

Future Plans

The 543S deposit is one of two lava flow top-hosted chalcocite deposits that have been subject to recent drilling programs by Highland, the other is the G-2 deposit located about 20 kilometers northeast of 543S. Highland plans to complete a resource estimate for G-2 in 2014. Although the possibility of an independent milling complex at 543S treating mineralization from both 543S and G-2 will be considered, Highland plans to evaluate alternatives that would treat mineralization from 543S and other undeveloped copper deposits in the Western Upper Peninsula of Michigan recently acquired by Highland, in a single center of metallurgical operations. Planned studies will evaluate an alternative that would involve transportation to and processing of mineralization from these deposits in a central mine and metallurgical complex, the location of which remains to be determined.

Qualified Persons

Rejean Sirois, Vice President of Geology and Resources for G Mining is the qualified person, as defined in National Instrument 43-101, responsible for the mineral resource estimate for the 543S deposit as reported herein. He has read and approved the relevant technical portions of this news release related to the mineral resource estimate for which he is responsible.

Ahmed Bouajila, Vice President, Metallurgy and Ore Processing for G Mining is the qualified person, as defined in National Instrument 43-101, responsible for supervising initial metallurgical test work on samples from the 543S deposit as reported herein. He has read and approved the relevant technical portions of this news release related to the metallurgical work for which he is responsible.

The balance of the technical information contained in this news release has been reviewed and approved by Ross R. Grunwald, PhD., VP Exploration for the Company. Dr. Grunwald is a qualified person as defined in NI 43-101.

G Mining is completing a National Instrument 43-101 technical report for the mineral resource estimate to be filed on SEDAR within 45 days of this press release.

Keweenaw Copper Project

The 543S deposit is part of the Keweenaw Copper Project that covers approximately 9,000 acres of mineral rights and is being explored under a Mining Venture Agreement between Highland and BRP LLC. The agreement allows Highland to earn a 65 percent interest by spending US$11.5 million on the project (which amount has been spent) and providing a feasibility study by October 26, 2015. The Keweenaw Project is approximately 180 km northeast of the White Pine North Project and 250 km of the Copperwood Project by road access.

Cautionary Statement

Mineral resources are not mineral reserves and do not have demonstrated economic viability. The terms "inferred" and "indicated" resources contains in this press release are recognized and required by NI 43-101 under Canadian regulations, but not recognized by the U.S. Securities and Exchange Commission ("SEC"). The SEC requires mining companies in their filings with the SEC to disclose only those mineral deposits that a company can economically and legally extract or produce. "Inferred resources" have a great amount of uncertainty as to their existence, and great uncertainty as to their economic and legal feasibility. It cannot be assumed that all or any part of an "inferred resource" will ever be upgraded to a higher category. Investors are cautioned not to assume that all or part of an inferred resource exists, or is economically or legally mineable and that all or any part of mineral deposits in the "measured" or "indicated" resource categories will ever be converted into reserves.

This press release contains 'forward-looking information' within the meaning of applicable Canadian securities legislation. Forward looking information in this news release includes information with respect to: the mineral resource estimate; the Company's plans to complete a mineral resource estimate at the G2 deposit; the timing and results of future studies; the geological and economic potential of the Keweenaw Project, including the possibility of developing an underground operation there; the potential to process mineralization with other deposits in a central mine; the completion of a feasibility study to earn 65% of the Keweenaw Project, and other statements and information regarding anticipated results regarding the Company's operations and exploration. Actual results may be materially different from those currently anticipated. Many factors, known and unknown, could cause the actual results to be materially different from those expressed or implied by such forward looking statements. Such risks include, but are not limited to: the volatility of copper price; the uncertainty of exploration results and mineral resource estimates, capital expenditure requirements and other costs; the uncertainties related to the Company's ability to acquire a 65% interest in the Keweenaw Project; currency fluctuations; the availability of financing for additional capital requirements, cost of exploration and development programs; mining risks; risks associated with governmental and environmental regulation and obtaining all the necessary permits for the development of the Project; and risks associated with global economic growth. The Company does not intend, and does not assume any obligation, to update these forward-looking statements and information, except as required by law. Accordingly, readers are advised not to place undue reliance on forward-looking statements.

About Highland

Highland Copper Company Inc. is a Canadian exploration company focused on exploring and developing copper projects within the Upper Peninsula of Michigan, U.S.A. Highland has recently completed the acquisition of the Copperwood Project and the interim closing of the White Pine Project. The common shares of Highland trade on the TSX Venture Exchange under the symbol 'HI'. Additional information about the Company is available on the Company's website at www.highlandcopper.com and on SEDAR at www.sedar.com.

Figures are available at the following address: http://file.marketwire.com/release/hi_0825.pdf

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

More Stories By Marketwired .

Copyright © 2009 Marketwired. All rights reserved. All the news releases provided by Marketwired are copyrighted. Any forms of copying other than an individual user's personal reference without express written permission is prohibited. Further distribution of these materials is strictly forbidden, including but not limited to, posting, emailing, faxing, archiving in a public database, redistributing via a computer network or in a printed form.

Latest Stories
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
Bert Loomis was a visionary. This general session will highlight how Bert Loomis and people like him inspire us to build great things with small inventions. In their general session at 19th Cloud Expo, Harold Hannon, Architect at IBM Bluemix, and Michael O'Neill, Strategic Business Development at Nvidia, discussed the accelerating pace of AI development and how IBM Cloud and NVIDIA are partnering to bring AI capabilities to "every day," on-demand. They also reviewed two "free infrastructure" pr...
In the enterprise today, connected IoT devices are everywhere – both inside and outside corporate environments. The need to identify, manage, control and secure a quickly growing web of connections and outside devices is making the already challenging task of security even more important, and onerous. In his session at @ThingsExpo, Rich Boyer, CISO and Chief Architect for Security at NTT i3, will discuss new ways of thinking and the approaches needed to address the emerging challenges of securit...
Almost two-thirds of companies either have or soon will have IoT as the backbone of their business. Though, IoT is far more complex than most firms expected with a majority of IoT projects having failed. How can you not get trapped in the pitfalls? In his session at @ThingsExpo, Tony Shan, Chief IoTologist at Wipro, will introduce a holistic method of IoTification, which is the process of IoTifying the existing technology portfolios and business models to adopt and leverage IoT. He will delve in...
As cloud adoption continues to transform business, today's global enterprises are challenged with managing a growing amount of information living outside of the data center. The rapid adoption of IoT and increasingly mobile workforce are exacerbating the problem. Ensuring secure data sharing and efficient backup poses capacity and bandwidth considerations as well as policy and regulatory compliance issues.
"I think that everyone recognizes that for IoT to really realize its full potential and value that it is about creating ecosystems and marketplaces and that no single vendor is able to support what is required," explained Esmeralda Swartz, VP, Marketing Enterprise and Cloud at Ericsson, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Wooed by the promise of faster innovation, lower TCO, and greater agility, businesses of every shape and size have embraced the cloud at every layer of the IT stack – from apps to file sharing to infrastructure. The typical organization currently uses more than a dozen sanctioned cloud apps and will shift more than half of all workloads to the cloud by 2018. Such cloud investments have delivered measurable benefits. But they’ve also resulted in some unintended side-effects: complexity and risk. ...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his Day 2 Keynote at @ThingsExpo, Henrik Kenani Dahlgren, Portfolio Marketing Manager at Ericsson, discussed how to plan to cooperate, partner, and form lasting all-star teams to change the...
When building large, cloud-based applications that operate at a high scale, it’s important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. “Fly two mistakes high” is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee A...
“We're a global managed hosting provider. Our core customer set is a U.S.-based customer that is looking to go global,” explained Adam Rogers, Managing Director at ANEXIA, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
SYS-CON Events announced today that Linux Academy, the foremost online Linux and cloud training platform and community, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Linux Academy was founded on the belief that providing high-quality, in-depth training should be available at an affordable price. Industry leaders in quality training, provided services, and student certification passes, its goal is to c...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet and...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at 20th Cloud Expo, Ed Featherston, director/senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Cognitive Computing is becoming the foundation for a new generation of solutions that have the potential to transform business. Unlike traditional approaches to building solutions, a cognitive computing approach allows the data to help determine the way applications are designed. This contrasts with conventional software development that begins with defining logic based on the current way a business operates. In her session at 18th Cloud Expo, Judith S. Hurwitz, President and CEO of Hurwitz & ...