Welcome!

News Feed Item

Antibody Drug Conjugates Market (2nd Edition), 2014 - 2024

NEW YORK, Sept. 1, 2014 /PRNewswire/ --

Reportlinker.com announces that a new market research report is available in its catalogue:

Antibody Drug Conjugates Market (2nd Edition), 2014 - 2024

http://www.reportlinker.com/p02280919/Antibody-Drug-Conjugates-Market-2nd-Edition-2014---2024.html

INTRODUCTION

Antibody drug conjugates (ADCs) are a new class of therapeutic agents, gaining increasing attention from both large and small pharmaceutical companies. Generally addressed as the marriage of an antibody with a toxic drug / chemotherapy drug, these conjugates are believed to be more efficient and effective in the treatment of a disease.

The ADC market is still in its infancy. At present, Adcetris and Kadcyla are the only two marketed drugs. However, there are several ADCs under development, with most of them being developed for oncological indication. Pharmaceutical companies are keen to add innovative molecules to their diminishing product pipelines and ADCs provide an attractive opportunity due to their novel nature.

Although the market now has presence of several large pharmaceutical companies, the technological capabilities for development of ADC still lies with a few technology providers. Seattle Genetics and ImmunoGen are amongst the pioneers in the field of ADC, with most pipeline ADCs using their technology. Most development to date has been carried under technology license agreements. However, we expect to see more co-development agreements in the future.

As more ADCs move from pipeline to the market, there is likely to be a further increase in investments in this area. Drug developers / venture capital firms are investing huge amount of money in biologics and it remains to be seen what proportion of this will be directed towards ADCs. The current market landscape will gradually evolve as large pharmaceutical companies look to gain competitive advantage in the ADC market. The future of the market is promising, though there are several challenges to meet.

SCOPE OF THE REPORT

The Antibody Drug Conjugates Market, 2014-2024 report provides an extensive study on this emerging field of therapeutics. The report covers various aspects, such as, advantages of antibody drug conjugates over traditional antibody therapeutics, the need for this new class of medicine, manufacturing challenges, key market drivers and upcoming opportunities.

One of the key objectives of this report is to understand the current and future state of the antibody drug conjugates market. This is done by analysing
- Products currently available in the market and those under development (both clinical / pre-clinical),
- Technology providers, and key cytotoxin, linker and conjugation technologies supporting the development of improved ADCs,
- Partnerships which have taken place over the last five years covering product co-development, technology licensing and co-marketing,
- Competitive landscape and inherent threats to growth in the short and long term,
- Development and sales potential based on target consumer segments, likely adoption rate and expected pricing.

The base year for the report is 2013; actual sales data has been presented for marketed ADCs during this year. The report provides short-mid term and long term market forecasts for the period 2014 - 2019 and 2019 - 2024, respectively. The research, analysis and insights presented in this report include potential sales of 11 marketed and pipeline ADCs; this analysis is backed by a deep understanding of key drivers behind the growth.

Owing to niche nature of the market, with most products in the pipeline, we have provided three market forecast scenarios to add robustness to our model. The conservative, base and optimistic scenarios represent three different tracks of industry evolution.

All actual figures have been sourced and analysed from publicly available information. The figures mentioned in this report are in USD, unless otherwise specified.

EXAMPLE HIGHLIGHTS

1. Driven by the sales of Adcetris and Kadcyla (the two drugs currently available commercially), the ADC market is likely to be worth more than USD 600 million in 2014.
2. About 45 molecules are currently in clinical development. Of these, approximately 25% are in Phase II or Phase III of development. As expected, the preclinical pipeline is also gradually expanding.
3. Most commonly used cytotoxins for ADCs under clinical development include auristatin, calicheamicin, maytansine and duocarmycin. Auristatin dominates the market and accounts for over 50% of ADCs in clinical development.
4. Roche, with 10 molecules in clinical development, has the most developed pipeline of ADCs. Relatively new entrants such as Oxford BioTherapeutics, Mersana Therapeutics, Abzena are likely to provide the necessary push (both in terms of technology and innovation).
5. Seattle Genetics and ImmunoGen are the two most active companies offering their proprietary ADC technologies to a large number of ADCs under development.
6. About 70%-80% of ADC manufacturing is currently outsourced. There are limited number of contract manufacturers with capabilities for development of linkers and cytotoxins. In addition, even fewer CMOs provide conjugation services for ADC.
7. Several technological developments have taken place in the recent past; more stable linkers and potent cytotoxins are likely to ensure that the next generation ADCs have improved safety/efficacy profile.
8. With around 7-10 new ADC commercial launches over the coming decade, we believe the overall market will be worth USD 10 billion annually by 2024.

RESEARCH METHODOLOGY

Most of the data presented in this report has been gathered by secondary research. We have also conducted interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will shape up across different regions and drug segments. Where possible, the available data has been checked for accuracy from multiple sources of information.

The secondary sources of information include
- Annual reports
- Investor presentations
- SEC filings
- Industry databases
- News releases from company websites
- Government policy documents
- Other analysts' opinion reports

While the focus has been on forecasting the market over the coming ten years, the report also provides our independent view on various technological and non-commercial trends emerging in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market gathered from various secondary and primary sources of information.

CHAPTER OUTLINES

Chapter 2 presents an executive summary of the report. It offers a high level view on where the antibody drug conjugate market is headed in the mid-long term.

Chapter 3 provides a general introduction to the antibody drug conjugates. In this section we have discussed, in detail, the concept of ADC, its components, mechanism of action and advantages over traditional therapies.

Chapter 4 provides an overview of the ADC market. This chapter has information about all the ADC molecules in development (clinical or preclinical) along with their current phase of development, companies that are most active in the field of ADC and most common types of cytotoxin and linkers used for ADC development.

Chapter 5 presents our analysis on the ADC market for the upcoming decade. It includes detailed drug profiles and likely sales forecast for each of the drug currently in phase II or higher stage of development.

Chapter 6 discusses the current manufacturing challenges associated with ADCs. It also provides information about the leading contract manufacturers which are focused in this domain.

Chapter 7 provides insight to the recent developments and technological advancements. It includes a comprehensive list of partnerships, including the details of agreements, which have taken place between various pharmaceutical companies over the last few years.

Chapter 8 includes profiles of the key companies in the ADC market. Each company profile includes information such as financial performance, geographical presence, marketed / pipeline ADC drugs and recent developments.

Chapter 9 provides our analysis of the strengths, weaknesses, opportunities and threats in the ADC market, capturing the key elements likely to influence future growth.

Chapter 10 is a collection of interview transcripts; these discussions have helped us in forming a better understanding of the key market dynamics, competitive landscape and the likely future trends in the market.

Chapter 11 summarises the overall report. In this chapter, we have provided a recap of the key takeaways and our independent opinion based on the research and analysis described in previous chapters.

Chapter 12 is an appendix, which provides tabulated data and numbers for all the figures provided in the report.

Chapter 13 is an appendix, which lists down all the companies and organisations involved in the ADC market.

TABLE OF CONTENTS
1. PREFACE
1.1. Scope of the Report
1.2. Research Methodology
1.3. Chapter Outlines

2. EXECUTIVE SUMMARY

3. INTRODUCTION
3.1. Chapter Overview
3.2. The Traditional Treatments: Naked Antibody and Cytotoxins
3.2.1. Naked Antibodies
3.2.1.1. How Monoclonal Antibody Therapy Works
3.2.2. Cytotoxins
3.3. Conjugated or Armed Antibodies
3.4. The Revolutionary Technology: ADCs
3.5. Advantages of ADC over Traditional Therapeutics
3.6. Parts of an ADC
3.6.1. Antibody
3.6.2. Cytotoxin
3.6.3. Linker: Function and Types

4. ADC THERAPEUTICS: OVERVIEW AND BACKGROUND
4.1. Chapter Overview
4.2. Kadcyla Becomes the Third ADC to Reach Market
4.2.1. Mylotarg (Pfizer)
4.2.1.1. Mechanism of Action
4.2.1.2. Approval and Discontinuation of Mylotarg in the US
4.2.1.3. Reasons for Poor Clinical Benefits of Mylotarg
4.2.2. Adcetris (Seattle Genetics/Takeda Oncology Company)
4.2.3. Kadcyla (Roche/Genentech)
4.3. Companies Active in the ADC Market
4.3.1. Large Pharmaceutical Companies Taking Interest
4.4. Companies Providing ADC Technology
4.5. Role of Venture Capitalists
4.6. Analysis of the Development Pipeline
4.6.1. Limited Number of Molecules in Late Stage Development
4.6.2. Cancer is the Leading Indication, with ADCs Against Blood Cancer Dominating
4.7. Commonly Used Cytotoxins in ADC
4.7.1. Cytotoxins Used in ADCs are Highly Potent APIs
4.7.2. Auristatins are the Most Commonly Used Cytotoxins
4.8. Linker: Function and Types
4.8.1. Manufacturing of Linkers
4.8.2. ADC Market by Type of Linker

5. ADC MARKET FORECAST, 2014 - 2024
5.1. Chapter Overview
5.2. ADC Market, 2013
5.2.1. Adcetris and Kadcyla were the Sole Participant in the Market in 2013
5.3. Overall ADC Market Forecast, 2014-2024
5.3.1. Scope and Limitations
5.3.2. Forecast Methodology
5.3.3. The ADC Drug Sales Market, 2014 - 2024
5.3.3.1. Overall Sales Forecast, 2014 - 2024: By Type of ADC
5.3.3.2. Overall Sales Forecast, 2014 - 2024: By Type of Linker
5.3.3.3. Overall Sales Forecast, 2014 - 2024: By Type of Cytotoxin

5.4. Adcetris (Seattle Genetics / Millennium)
5.4.1. Mechanism of Action
5.4.2. The Cost of Treatment with Adcetris and Reimbursement
5.4.3. Factors Supporting the High Price
5.4.4. Adcetris Sales, 2011-Q1 2014
5.4.5. Strategies for Market Expansion
5.4.6. Adcetris Sales Forecast: Short-Mid Term, 2014-2019
5.4.7. Adcetris Sales Forecast: Long Term, 2019-2024

5.5. Kadcyla / T-DM1 (Genentech / Roche)
5.5.1. Drug Specifications
5.5.2. Launch and Reimbursement
5.5.3. Pricing
5.5.4. Roche's Survival Kit
5.5.5. Long Route to Approval
5.5.6. Kadcyla Sales
5.5.7. Current State of Development: Indications and Timeline
5.5.8. Kadcyla Sales Forecast, 2014-2019
5.5.9. Kadcyla Sales Forecast: Long Term, 2019-2024

5.6. Glembatumumab Vedotin / CDX-011 (Celldex Therapeutics)
5.6.1. The Drug Specifications
5.6.2. Clinical Development
5.6.2.1. Metric Trial
5.6.3. Competition for CDX-011
5.6.4. CDX-011 Sales Forecast, 2014-2019
5.6.5. CDX-011 Sales Forecast: Long Term, 2019-2024

5.7. BT-062 (Biotest)
5.7.1. Drug Specifications
5.7.2. Clinical Development
5.7.3. Competition for Bt-062
5.7.4. BT-062 Sales Forecast: Short-Mid Term, 2017-2019
5.7.5. BT-062 Sales Forecast: Long Term, 2019-2024

5.8. Inotuzumab Ozogamicin/CMC-544 (Pfizer)
5.8.1. Drug Specifications
5.8.2. Current Development Status
5.8.3. Competition for CMC-544
5.8.4. Inotuzumab Ozogamicin / CMC-544 Sales Forecast: Long Term, 2018-2024

5.9. RG7593 and RG7596 (Roche)
5.9.1. Drug Specifications
5.9.2. Clinical Development
5.9.3. Future Plans
5.9.4. RG7596 Sales Forecast: Long Term, 2018-2024
5.10. PSMA-ADC (Progenics)
5.10.1. Drug Specifications
5.10.2. PSMA ADC Development for Prostate Cancer
5.10.3. Competition for PSMA ADC
5.10.4. PSMA ADC Sales Forecast: Long Term, 2019-2024

5.11. SAR3419 (Sanofi Aventis)
5.11.1. Drug Specifications
5.11.2. Structure, Administration and Dosage
5.11.3. Current State of Development
5.11.4. Competition for SAR3419
5.11.5. SAR3419 Sales Forecast: Long Term, 2019-2024

5.12. IMMU-130 (Immunomedics)
5.12.1. Drug Specifications
5.12.2. Clinical Development
5.12.3. Competition for IMMU-130
5.12.4. IMMU-130 Sales Forecast: Long Term, 2019-2024

5.13. RG7599 (Roche / Genentech)
5.13.1. Drug Specifications
5.13.2. Clinical Trial and Development
5.13.3. Competition For RG7599
5.13.4. RG7599 Sales Forecast: Long Term, 2020-2024

5.14. ABT-414 (AbbVie)
5.14.1. Drug Specifications
5.14.2. Clinical Trials and Development
5.14.3. Competition for ABT-414
5.14.4. ABT-414 Sales Forecast: Long Term, 2020-2024

6. MANUFACTURING OF ADCs
6.1. Chapter Overview
6.2. Steps Involved in Manufacturing an ADC
6.3. Challenges Facing the ADC Manufacturers
6.4. In-House Manufacturing of ADCs
6.5. Presence of Contract Manufacturers
6.5.1. Linkers
6.5.2. Cytotoxins
6.5.3. Conjugation
6.6. Leading ADC Contract Manufacturers
6.6.1. SAFC
6.6.2. Piramal Healthcare
6.6.3. Lonza
6.6.4. Albany Molecular Research Institute (AMRI)
6.6.5. BSP Pharmaceuticals
6.6.6. Pierre Fabre Medicament Production (PFMP)
6.6.7. Catalent
6.7. CMOs Investing in ADC Capabilities
6.8. Contract Manufacturers Collaborating to Provide ADC Capabilities

7. RECENT DEVELOPMENTS: FOCUS ON PARTNERSHIPS AND TECHNOLOGY EVOLUTION
7.1. Chapter Overview
7.2. Recent Partnerships
7.2.1. Partnership Models
7.2.2. Number of Partnerships have Increased Overtime
7.2.3. Seattle Genetics and ImmunoGen have been the Most Active Companies
7.3. Technological Developments
7.3.1. Emerging Cytotoxins/Payload
7.3.2. Linker Technologies
7.3.3. Site-Specific Conjugation Technology
7.3.4. Use of Antibody Fragments in Place of Whole Antibody

8. PROFILES OF LEADING COMPANIES

8.1. Chapter Overview
8.2. ImmunoGen
8.2.1. Targeted Antibody Payload (TAP) Technology
8.2.1.1. Linker Technology
8.2.2. Marketed and Pipeline Products
8.2.2.1. Marketed ADCs
8.2.2.2. Pipeline ADCs
8.2.3. Business Model
8.2.3.1. Types of Agreements and Current Partners
8.2.4. In-House Manufacturing Capabilities
8.2.5. Financial Performance

8.3. Seattle Genetics
8.3.1. ADC Technology
8.3.2. Exploring New Technologies
8.3.2.1. Novel Cytotoxins
8.3.2.2. Site-Specific Conjugation Technology
8.3.3. Business Model
8.3.3.1. Types of Agreements and Current Partners
8.3.4. Marketed and Pipeline Products
8.3.4.1. Marketed ADCs
8.3.4.2. Pipeline ADCs
8.3.5. Financial Performance

8.4. Immunomedics
8.4.1. Marketed and Pipeline Products
8.4.2. Financial Performance

8.5. Spirogen (Acquired by MedImmune)
8.5.1. Pyrrolobenzodiazepines (PBDs) Technology
8.5.2. ADC Development and Collaborations
8.5.3. AstraZeneca Takes Over Spirogen

8.6. Pfizer
8.6.1. Marketed and Pipeline Products
8.6.2. Collaboration with Seattle Genetics
8.6.3. Financial Performance

8.7. Roche/Genentech
8.7.1. Evaluating Technology from ImmunoGen and Seattle Genetics
8.7.2. Development Pipeline: 10 Molecules in Clinical Development
8.7.3. Financial Performance

8.8. Polytherics (An Abzena Company)
8.8.1. ThioBridge Technology
8.8.2. Pegylation and Optimisation Technology
8.8.3. Business Model
8.8.4. Revenue Generation

8.9. Oxford BioTherapeutics
8.9.1. Oxford Genome Anatomy Project
8.9.2. ADC Pipeline

8.10. Other Companies
8.10.1. Mersana Therapeutics
8.10.1.1. Fleximer- ADC Technology
8.10.1.2. ADC Collaborations
8.10.1.3. Funding

8.10.2. Synthon
8.10.2.1. ADC Technology
8.10.2.2. ADC Manufacturing
8.10.2.3. ADC Pipeline

8.10.3. Intellect Neurosciences
8.10.3.1. CONJUMAB-A Technology
8.10.3.2. ADC Pipeline
8.10.3.3. Financial Performance

8.10.4. Progenics Pharmaceuticals
8.10.4.1. PSMA Targeted Oncology Pipeline
8.10.4.2. Financial Performance

8.10.5. Astellas Pharma/Agensys
8.10.5.1. ADC Pipeline
8.10.5.2. Financial Performance

8.10.6. Heidelberg Pharma
8.10.6.1. ADC Technology
8.10.6.2. ADC Pipeline

9. SWOT ANALYSIS
9.1. Strengths
9.2. Weaknesses
9.3. Opportunities
9.4. Threats

10. INTERVIEW TRANSCRIPTS
10.1. Interview 1: Lonza, Laurent Ducry, ADC R&D
10.2. Interview 2: Polytherics (an Abzena company), Dr. John Burt, CEO, Abzena
10.3. Interview 3: Oxford BioTherapeutics, Dr. Christian Rohlff, Founder and CEO
10.4. Interview 4: Catalent Pharma Solutions, Stacy McDonald, Group Product Manager & Jennifer L. Mitcham, Director - Business Development
10.5. Interview 5: BSP Pharmaceuticals, Aldo Braca, CEO
10.6. Interview 6: Piramal Healthcare, Dr. Mark Wright, Site Head, Grangemouth
10.7. Interview 7: Leading CMO, Director, Business Development

11. CONCLUSIONS
11.1. ADC: Expanding the Pipeline of Biologics
11.2. Market is in its Infancy, with Huge Potential for Growth
11.3. CMOs: Narrowing the Need Supply Gap
11.4. An Attractive Market for Large Pharmaceutical Companies
11.5. Concluding Remarks

12. APPENDIX 1: TABLES

13. APPENDIX 2: LIST OF COMPANIES AND ORGANISATIONS

?
LIST OF FIGURES

Figure 2.1 ADC Clinical Trials: Market Map
Figure 3.1 Parts of Antibody Drug Conjugate
Figure 4.1 Companies Active in the ADC Market: Number of Molecules in Development (Clinical and Marketed)
Figure 4.2 ADCs in Clinical Development: Share (%) by Phase of Development
Figure 5.1 ADC Sales Forecast, 2014 - 2024: Base Scenario (USD Million)
Figure 5.2 ADC Sales Forecast, 2014 - 2024: By Type of ADC (USD Million)
Figure 5.3 ADC Sales Forecast, 2014 - 2024: By Type of Linker (USD Million)
Figure 5.4 ADC Sales Forecast, 2014 - 2024: By Type of Cytotoxin (USD Million)
Figure 5.5 Adcetris Sales, 2011-Q1 2014 (USD Million)
Figure 5.6 Adcetris Market (USD Million), Short-Midterm Forecast: 2014-2019 (Base Scenario)
Figure 5.7 Adcetris Market (USD Million), Long Term Forecast: 2019-2024 (Base Scenario)
Figure 5.8 Kadcyla Sales, 2013 – 2014 (USD Million)
Figure 5.9 Kadcyla / T-DM1 Market (USD Million), Short-Midterm Forecast: 2014-2019 (Base Scenario)
Figure 5.10 Kadcyla / T-DM1 Market (USD Million), Long Term Forecast: 2019-2024 (Base Scenario)
Figure 5.11 Glembatumumab Vedotin / CDX-011 Market (USD Million), Short-Midterm Forecast: 2017-2019 (Base Scenario)
Figure 5.12 Glembatumumab Vedotin / CDX-011 Market (USD Million), Long Term Forecast: 2019-2024(Base Scenario)
Figure 5.13 BT-062 Market (USD Million), Short-Midterm Forecast, 2017-2019 (Base Scenario)
Figure 5.14 BT-062 Market (USD Million), Long Term Forecast, 2019-2024 (Base Scenario)
Figure 5.15 Inotuzumab Ozogamicin / CMC-544 Market (USD Million), Long Term Forecast: 2018-2024 (Base Scenario)
Figure 5.16 RG7596 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Figure 5.17 PSMA ADC Market (USD Million), Long Term Forecast, 2019-2024 (Base Scenario)
Figure 5.18 SAR3419 Market (USD Million), Long Term Forecast, 2019-2024 (Base Scenario)
Figure 5.19 IMMU-130Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Figure 5.20 RG7599 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Figure 5.21 ABT-414 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Figure 7.1 Number of Partnerships in the Field of ADCs, 2005 - 2014
Figure 7.2 ADC Partnerships: Major Stakeholders
Figure 8.1 Seattle Genetics: Sales Performance (USD Million), 2011-2014 Q1
Figure 8.2 Pfizer Sales Performance (USD Billion), 2011 – 2014 Q1
Figure 8.3 Roche Group Sales Performance (CHF Billion), 2011 – 2014 Q1
Figure 8.4 Roche Group HER2 Franchise Sales Performance (CHF million), 2013 - 2014 Q1
Figure 11.1 ADC Market (USD Million) Forecast: 2014, 2019 and 2024

?
LIST OF TABLES

Table 3.1 Commonly Used Cytotoxins for ADC Therapeutics
Table 4.1 Approval History of Mylotarg
Table 4.2 ADC Molecules in Clinical Development: Roche / Genentech
Table 4.3 ADC Molecules in Clinical Development: Seattle Genetics
Table 4.4 ADC Molecules in Clinical Development: ImmunoGen
Table 4.5 ADC Molecules in Clinical Development: Immunomedics
Table 4.6 ADC Molecules in Clinical Development: Astellas Pharma / Agensys
Table 4.7 ADC Molecules in Clinical Development: Pfizer / Wyeth
Table 4.8 ADC Molecules in Clinical Development: Sanofi Aventis
Table 4.9 ADC Molecules in Clinical Development: Amgen
Table 4.10 ADC Molecules in Clinical Development: AbbVie
Table 4.11 ADC Molecules in Clinical Development: Millennium
Table 4.12 ADC Molecules in Clinical Development: Celldex Therapeutics
Table 4.13 ADC Molecules in Clinical Development: Progenics Pharmaceuticals
Table 4.14 ADC Molecules in Clinical Development: Genmab
Table 4.15 ADC Molecules in Clinical Development: Bayer Healthcare
Table 4.16 ADC Molecules in Clinical Development: Biotest
Table 4.17 ADC Molecules in Clinical Development: Bristol-Myers Squibb
Table 4.18 ADC Molecules in Clinical Development: Stem CentRx
Table 4.19 ADC Molecules in Clinical Development: VIVENTIA Biotechnologies
Table 4.20 ADC Molecules in Preclinical Development: Ambrx
Table 4.21 ADC Molecules in Preclinical Development: Oxford BioTherapeutics
Table 4.22 ADC Molecules in Preclinical Development: Novartis

Table 4.23 ADC Molecules in Preclinical Development: Roche / Genentech
Table 4.24 ADC Molecules in Preclinical Development: Sanofi Aventis
Table 4.25 ADC Molecules in Preclinical Development: Amgen
Table 4.26 ADC Molecules in Preclinical Development: Synthon
Table 4.27 ADC Molecules in Preclinical Development: AbbVie
Table 4.28 ADC Molecules in Preclinical Development: AbGenomics
Table 4.29 ADC Molecules in Preclinical Development: ADC Therapeutics
Table 4.30 ADC Molecules in Preclinical Development: Affinicon
Table 4.31 ADC Molecules in Preclinical Development: Allozyne
Table 4.32 ADC Molecules in Preclinical Development: Avid Biologics
Table 4.33 ADC Molecules in Preclinical Development: Astellas / Agensys
Table 4.34 ADC Molecules in Preclinical Development: Bayer
Table 4.35 ADC Molecules in Preclinical Development: Bristol Myers Squibb
Table 4.36 ADC Molecules in Preclinical Development: Celldex Therapeutics
Table 4.37 ADC Molecules in Preclinical Development: Daiichi Sankyo
Table 4.38 ADC Molecules in Preclinical Development: Eli Lilly
Table 4.39 ADC Molecules in Preclinical Development: Endo Pharmaceuticals
Table 4.40 ADC Molecules in Preclinical Development: Esperance Pharmaceuticals
Table 4.41 ADC Molecules in Preclinical Development: GSK
Table 4.42 ADC Molecules in Preclinical Development: Intellect Neurosciences
Table 4.43 ADC Molecules in Preclinical Development: Merck
Table 4.44 ADC Molecules in Preclinical Development: ImmunoGen
Table 4.45 ADC Molecules in Preclinical Development: Heidelberg Pharma
Table 4.46 ADC Molecules in Preclinical Development: Seattle Genetics
Table 4.47 ADC Molecules in Preclinical Development: National Research Council, Canada
Table 4.48 ADC Molecules in Preclinical Development: Pfizer
Table 4.49 ADC Molecules in Preclinical Development: Philochem
Table 4.50 ADC Molecules in Preclinical Development: CytomX Therapeutics
Table 4.51 Commonly Used Cytotoxins for ADC Therapeutics
Table 4.52 OEL Bands, Safebridge Consultants

Table 4.53 Pipeline ADCs Using Valine-Citrulline Peptide Linker
Table 4.54 Pipeline ADCs Using Hindered Disulphide Linker
Table 4.55 Pipeline ADCs Using Hydrazone Linker
Table 4.56 Pipeline ADCs Using Maleimidocaproyl Linker
Table 4.57 Pipeline ADCs Using Thioether Linker
Table 4.58 Pipeline ADCs Using Protease Cleavable Peptide Linker
Table 4.59 Pipeline ADCs Using Other Non-Cleavable Linker
Table 4.60 Pipeline ADCs Using Furin Cleavable Peptide Linker
Table 5.1 Current Development Phase and Expected Launch Year of ADCs in Clinical Development (Phase II and Higher)
Table 5.2 Adcetris: Ongoing Clinical Trials
Table 5.3 List of Trastuzumab Biosimilars Under Development, 2014
Table 5.4 Kadcyla / T-DM1: Ongoing Clinical Trials
Table 5.5 BT-062: Ongoing Clinical Trials
Table 5.6 Inotuzumab Ozogamicin/CMC-544: Ongoing Clinical Trials
Table 5.7 Comparison of Drugs Available for Metastatic Castration Resistant Prostate Cancer
Table 5.8 SAR3419: Ongoing Clinical Trials
Table 5.9 IMMU-130: Ongoing Clinical Trials
Table 5.10 RG7599: Ongoing Clinical Trials
Table 5.11 ABT-414: Ongoing Clinical Trials
Table 6.1 List of Contract Manufacturers and Their Capabilities in ADC Manufacturing
Table 7.1 List of Partnerships in the Field of ADCs, 2000 - 2014
Table 7.2 Companies Providing Site-Specific Conjugation Technology
Table 8.1 ImmunoGen ADC Pipeline, 2014
Table 8.2 Seattle Genetics ADC Pipeline, 2014
Table 8.3 Immunomedics ADC Pipeline, 2014
Table 8.4 Pfizer / Wyeth ADC Pipeline, 2014
Table 8.5 Roche / Genentech ADC Pipeline, 2014

Table 8.6 Oxford BioTherapeutics ADC Pipeline, 2014
Table 8.7 Synthon ADC Pipeline, 2014
Table 8.8 Intellect Neurosciences ADC Pipeline, 2014
Table 8.9 Progenics Pharmaceuticals PSMA Pipeline, 2014
Table 8.10 Astellas Pharma / Agensys ADC Pipeline, 2014
Table 9.1 SWOT Analysis of ADC Market
Table 12.1 ADCs in Clinical Development: Share (%) by Phase of Development
Table 12.2 ADC Sales Forecast 2014 - 2024: Base Scenario (USD Million)
Table 12.3 ADC Sales Forecast, 2014 - 2024: Conservative Scenario (USD Million)
Table 12.4 ADC Sales Forecast, 2014 - 2024: Optimistic Scenario (USD Million)
Table 12.5 ADC Sales Forecast, 2014 - 2024: By Type of Linker (USD Million)
Table 12.6 ADC Sales Forecast, 2014 - 2024: By Type of Cytotoxin (USD Million)
Table 12.7 Adcetris Sales, 2011-Q1 2014 (USD Million)
Table 12.8 Adcetris Market (USD Million), Short-Midterm Forecast: 2014-2019 (Base Scenario)
Table 12.9 Adcetris Market (USD Million), Short-Midterm Forecast: 2014-2019 (Conservative Scenario)
Table 12.10 Adcetris Market (USD Million), Short-Midterm Forecast: 2014-2019 (Optimistic Scenario)
Table 12.11 Adcetris Market (USD Million), Long Term Forecast: 2019-2024 (Base Scenario)
Table 12.12 Adcetris Market (USD Million), Long Term Forecast: 2019-2024 (Conservative Scenario)
Table 12.13 Adcetris Market (USD Million), Long Term Forecast: 2019-2024 (Optimistic Scenario)
Table 12.14 Kadcyla / T-DM1 Market (USD Million), Short-Midterm Forecast: 2014-2019 (Base Scenario)
Table 12.15 Kadcyla / T-DM1 Market (USD Million), Short-Midterm Forecast: 2014-2019 (Conservative Scenario)
Table 12.16 Kadcyla / T-DM1 Market (USD Million), Short-Midterm Forecast: 2014-2019 (Optimistic Scenario)
Table 12.17 Kadcyla / T-DM1 Market (USD Million), Long Term Forecast: 2019-2024 (Base Scenario)
Table 12.18 Kadcyla / T-DM1 Market (USD Million), Long Term Forecast: 2019-2024 (Conservative Scenario)
Table 12.19 Kadcyla / T-DM1 Market (USD Million), Long Term Forecast: 2019-2024 (Optimistic Scenario)

Table 12.20 Glembatumumab Vedotin / CDX-011 Market (USD Million), Short-Midterm Forecast: 2016-2019 (Base Scenario)
Table 12.21 Glembatumumab Vedotin / CDX-011 Market (USD Million), Short-Midterm Forecast: 2016-2019 (Conservative Scenario)
Table 12.22 Glembatumumab Vedotin / CDX-011 Market (USD Million), Short-Midterm Forecast: 2016-2019 (Optimistic Scenario)
Table 12.23 Glembatumumab Vedotin / CDX-011 Market (USD Million), Long Term Forecast: 2019-2024 (Base Scenario)
Table 12.24 Glembatumumab Vedotin / CDX-011 Market (USD Million), Long Term Forecast: 2019-2024 (Conservative Scenario)
Table 12.25 Glembatumumab Vedotin / CDX-011 Market (USD Million), Long Term Forecast: 2019-2024 (Optimistic Scenario)
Table 12.26 BT-062 Market (USD Million), Short-Midterm Forecast, 2017-2019 (Base Scenario)
Table 12.27 BT-062 Market (USD Million), Short-Midterm Forecast, 2017-2019 (Conservative Scenario)
Table 12.28 BT-062 Market (USD Million), Short-Midterm Forecast, 2017-2019 (Optimistic Scenario)
Table 12.29 BT-062 Market (USD Million), Long Term Forecast, 2019-2024 (Base Scenario)
Table 12.30 BT-062 Market (USD Million), Long Term Forecast, 2019-2024 (Conservative Scenario)
Table 12.31 BT-062 Market (USD Million), Long Term Forecast, 2019-2024 (Optimistic Scenario)
Table 12.32 Inotuzumab Ozogamicin / CMC-544 Market (USD Million), Long Term Forecast: 2018-2024 (Base Scenario)
Table 12.33 Inotuzumab Ozogamicin / CMC-544 Market (USD Million), Long Term Forecast: 2018-2024 (Conservative Scenario)
Table 12.34 Inotuzumab Ozogamicin / CMC-544 Market (USD Million), Long Term Forecast: 2018-2024 (Optimistic Scenario)
Table 12.35 RG7596 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Table 12.36 RG7596 Market (USD Million), Long Term Forecast, 2018-2024 (Conservative Scenario)

Table 12.37 RG7596 Market (USD Million), Long Term Forecast, 2018-2024 (Optimistic Scenario)
Table 12.38 PSMA ADC Market (USD Million), Long Term Forecast, 2019-2024 (Base Scenario)
Table 12.39 PSMA ADC Market (USD Million), Long Term Forecast, 2019-2024 (Conservative Scenario)
Table 12.40 PSMA ADC Market (USD Million), Long Term Forecast, 2019-2024 (Optimistic Scenario)
Table 12.41 SAR3419 Market (USD Million), Long Term Forecast, 2019-2024 (Base Scenario)
Table 12.42 SAR3419 Market (USD Million), Long Term Forecast, 2019-2024 (Conservative Scenario)
Table 12.43 SAR3419 Market (USD Million), Long Term Forecast, 2019-2024 (Optimistic Scenario)
Table 12.44 IMMU-130 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Table 12.45 IMMU-130 Market (USD Million), Long Term Forecast, 2018-2024 (Conservative Scenario)
Table 12.46 IMMU-130 Market (USD Million), Long Term Forecast, 2018-2024 (Optimistic Scenario)
Table 12.47 RG7599 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Table 12.48 RG7599 Market (USD Million), Long Term Forecast, 2018-2024 (Conservative Scenario)
Table 12.49 RG7599 Market (USD Million), Long Term Forecast, 2018-2024 (Optimistic Scenario)
Table 12.50 ABT-414 Market (USD Million), Long Term Forecast, 2018-2024 (Base Scenario)
Table 12.51 ABT-414 Market (USD Million), Long Term Forecast, 2018-2024 (Conservative Scenario)
Table 12.52 ABT-414 Market (USD Million), Long Term Forecast, 2018-2024 (Optimistic Scenario)
Table 12.53 Seattle Genetics: Sales Performance (USD Million), 2011-2014 Q1
Table 12.54 Pfizer Sales Performance (USD Billion), 2011 – 2014 Q1
Table 12.55 Roche Group Sales Performance (CHF Billion), 2011 – 2014 Q1
Table 12.56 Roche Group HER2 Franchise Sales Performance (CHF Million), 2013 – 2014 Q1

To order this report: Antibody Drug Conjugates Market (2nd Edition), 2014 - 2024
http://www.reportlinker.com/p02280919/Antibody-Drug-Conjugates-Market-2nd-Edition-2014---2024.html

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
In his general session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed cloud as a ‘better data center’ and how it adds new capacity (faster) and improves application availability (redundancy). The cloud is a ‘Dynamic Tool for Dynamic Apps’ and resource allocation is an integral part of your application architecture, so use only the resources you need and allocate /de-allocate resources on the fly.
Creating replica copies to tolerate a certain number of failures is easy, but very expensive at cloud-scale. Conventional RAID has lower overhead, but it is limited in the number of failures it can tolerate. And the management is like herding cats (overseeing capacity, rebuilds, migrations, and degraded performance). Download Slide Deck: ▸ Here In his general session at 18th Cloud Expo, Scott Cleland, Senior Director of Product Marketing for the HGST Cloud Infrastructure Business Unit, discusse...
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, showed how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningful f...
SYS-CON Events announced today that Interface Masters Technologies, a leader in Network Visibility and Uptime Solutions, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Interface Masters Technologies is a leading vendor in the network monitoring and high speed networking markets. Based in the heart of Silicon Valley, Interface Masters' expertise lies in Gigabit, 10 Gigabit and 40 Gigabit Eth...
Vidyo, Inc., has joined the Alliance for Open Media. The Alliance for Open Media is a non-profit organization working to define and develop media technologies that address the need for an open standard for video compression and delivery over the web. As a member of the Alliance, Vidyo will collaborate with industry leaders in pursuit of an open and royalty-free AOMedia Video codec, AV1. Vidyo’s contributions to the organization will bring to bear its long history of expertise in codec technolo...
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes ho...
"We have several customers now running private clouds. They're not as large as they should be but it's getting there. The adoption challenge has been pretty simple. Look at the world today of virtualization vs cloud," stated Nara Rajagopalan, CEO of Accelerite, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Tintri VM-aware storage is the simplest for virtualized applications and cloud. Organizations including GE, Toyota, United Healthcare, NASA and 6 of the Fortune 15 have said “No to LUNs.” With Tintri they mana...
An IoT product’s log files speak volumes about what’s happening with your products in the field, pinpointing current and potential issues, and enabling you to predict failures and save millions of dollars in inventory. But until recently, no one knew how to listen. In his session at @ThingsExpo, Dan Gettens, Chief Research Officer at OnProcess, will discuss recent research by Massachusetts Institute of Technology and OnProcess Technology, where MIT created a new, breakthrough analytics model f...
In his session at @DevOpsSummit at 19th Cloud Expo, Robert Doyle, lead architect at eCube Systems, will examine the issues and need for an agile infrastructure and show the advantages of capturing developer knowledge in an exportable file for migration into production. He will introduce the use of NXTmonitor, a next-generation DevOps tool that captures application environments, dependencies and start/stop procedures in a portable configuration file with an easy-to-use GUI. In addition to captu...
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm ...
From wearable activity trackers to fantasy e-sports, data and technology are transforming the way athletes train for the game and fans engage with their teams. In his session at @ThingsExpo, will present key data findings from leading sports organizations San Francisco 49ers, Orlando Magic NBA team. By utilizing data analytics these sports orgs have recognized new revenue streams, doubled its fan base and streamlined costs at its stadiums. John Paul is the CEO and Founder of VenueNext. Prior ...