Welcome!

Related Topics: @ThingsExpo, Java IoT, Linux Containers, Agile Computing, @CloudExpo, @DXWorldExpo

@ThingsExpo: Article

Adventures in Digital Real-Time Wonderland

The only way we’ll truly achieve real-time behavior is by understanding the connections the wonderland of real-time requires

In last week’s Forbes article I discussed various senses of the term real-time: low latency user interfaces, up-to-date information, live human interactions, and high-performance data processing – to name but a few. Today, for the Cortex audience (as well as the Wired Innovations and SYS-CON audiences), it’s time to channel Lewis Carroll and have a wondrous adventure to shed light on the true significance and challenges of real-time.

drinkmeAs we venture down the rabbit hole of our technology-infused world, it’s easy to see that everything is getting faster and bigger and, well, just more. Moore’s Law has just taken a big swig from a bottle that says drink me, as we have more memory, more storage, faster networks, more network-connected doodads, more and faster processors than ever before. And of course, we’re also getting better at everything: better apps. Better operating systems. Better ways of abstracting every element of our environment to provide even greater performance and flexibility. We are truly living in a time of plenty, if not excess. It’s no wonder that we want real-time in everything we do.

Today’s challenge isn’t only making stuff go faster. It’s figuring out how all the acceleration of all the bits and pieces fit together. Furthermore, this push to achieve a holistic perspective on all this gear drives our quest for real-time, as it only takes one bottleneck to slow everything else down. The only way we’ll truly achieve real-time behavior is by understanding the connections this wonderland of real-time requires. So let’s get started, or my ears and whiskers, we’ll be late!

rabbitReal-Time Starting Point: Reactive Programming

Google “real-time.” Right after Bill Maher’s HBO show and a general Wikipedia entry comes Wikipedia’s “real-time computing” page – presumably the real-time we’re talking about here. Load that page and you’ll notice two curiouser and curiouser facts right off the bat: first, the Wikipedia article itself has serious issues – as though no one who cares about real-time computing actually wants anybody else to understand it. Second, “real-time computing” is apparently synonymous with “reactive computing,” a much less familiar term. The rest of the article focuses on the sort of real-time we want from our antilock brakes – useful to be sure, but not the enterprise context we were looking for.

caterpillarMaybe reactive computing is closer to the mark? Well, there’s inexplicably no Wikipedia page for that. The closest we can come is the reactive computing mock turtle: reactive programming. The basic idea with reactive programming is that the behavior of pieces of software can be declaratively defined, and thus evaluated in real-time – just as spreadsheet cells update automatically when a value they refer to changes.

There’s more to the reactive story than software that updates automatically, however, as a visit to the reactive manifesto illustrates. This wise caterpillar of a manifesto calls out four key reactive traits: event-driven, scalable, responsive, and resilient – essentially calling for Cloud-friendly, event-driven architectures that have the declarative behavior definition we know and love from the spreadsheet – only now across a hybrid enterprise context. Mushroom, anyone?

catIt’s no coincidence that Bloomberg Agile Architecture™ (BAA) also calls out responsiveness and resilience, although the BAA contexts for these terms are aspects of business agility rather than software – but suffice it to say, if your software doesn’t have these traits, it’s unlikely your organization is agile. Alas, we thought we saw the Cheshire Cat of agility, but all we saw was its smile. The people behind the reactive manifesto, however, have a far more technical context for these terms – Play Framework, an open source web application framework for Java and Scala that bills itself as lightweight, stateless, and Web-friendly.

walrusAt this point this Cortex might have gone down the Scala rabbit hole – but I’ll save that for a future issue (Through the Looking Glass, perhaps?). Just for fun, however, let’s follow the stateless thread of this adventure to the beach where the Walrus and the Carpenter entertain their oysters. I’ve discussed statelessness over the years in many contexts, from the challenge of maintaining business process instance state with stateless Services, to the role hypermedia play in transferring state to the client if you actually follow REST properly (which almost no one does), to the challenges state management presents to Cloud-based applications. Understanding the relationship between statelessness and real-time behavior, however, ties all these concepts together in a nice package. The oysters, however, aren’t nearly so satisfied.

tartsState, in fact, is the Queen’s tarts of real-time computing. Sure, sometimes your software behavior can be completely reactive: event happens, do some stuff, give some kind of result, and never keep track of anything or wait around for somebody else to finish something. Such processing can be blisteringly fast, of course. It’s when you have to keep track of something that problems arise: where do you do the tracking? Do you have to keep track of multiple things at once when they might interact somehow? How permanent does the tracking have to be? And most importantly: won’t all this tracking slow everything down?

Time to hide the tarts: we could simply keep track of everything in the database. We get unlimited persistence, but databases are relatively slow and scaling them can be difficult. So let’s call upon the knave of hearts to spirit away those tarts to some piece of infrastructure in our middle tier, like an application server or an ESB. The database breathes a sigh of relief, but now we have a Cloud-unfriendly centralized state management approach. So instead, let’s pass the tarts to the client – after all, that’s where REST got its name (Representational State Transfer, natch). We now have scalability and Cloud friendliness, but this approach doesn’t deal well with shared state (as we would need for any type of collaborative application), and nobody likes HATEOAS, even when they understand it.

croquetEnter caching. The idea of a cache is to temporarily store those pesky state tarts, thus lightening the load on the persistence tier. And calloo callay! We can now cache in memory, making it wicked fast. But we still have the Cloud-friendliness problem, so enter from the Queen’s croquet pitch the distributed in-memory cache. Cloud-friendly, check. Wicked fast, check. Responsive? Well, it depends on the color of the roses. The problem here, of course, is the problem caches always have: if all your data are always changing or every interaction always requires different data, caches are worse than useless, since caching something only makes sense if somebody is going to use it a few times before you need to refresh it.

At this point there’s only one more place for the tarts to go: back to the database. We need faster databases that are both Cloud-friendly and deal well with the continually exploding nature of Big Data. It’s no wonder, therefore, that the database marketplace is undergoing a dramatic period of innovation. Yes, another rabbit hole for yet another day – but let’s tease out a single architectural tea party that relates directly to real-time: immutability.

hatterYour mad hatter of a database is immutable if it only supports writes that append data but no updates or deletes. Instead, to handle these pesky changes, additional records are added that indicate a previous record has changed. Immutability is essential for solving some knotty problems with concurrency – a mischievous dormouse for distributed computing since the client/server days and still a hassle in today’s Cloud-enabled world. As anyone who has used GitHub or a similar immutable data store can attest, immutability is the key to scaling a database that supports a large number of users who can add information, since all changes are handled as new data, and furthermore, the data store maintains a complete audit trail of everything that has ever happened, regardless of whether we all move down one seat at the table in search of clean dishes.

dormouseGitHub additionally works well with caching because it must assemble the current version of each stored file by adding together all the changes, or diffs, to that file. Temporary storage of each current version thus lightens the load on the underlying data store. But in other situations where the underlying data are always in flux, immutability still helps to address the real-time need. Reads can be extraordinarily fast compared to traditional databases, because the database can look to the index to identify the latest version of a record.

And so our adventure through real-time computing brings us to indexing in all its glory – not just for finding the desired record, but also for all the metadata necessary to assemble the various diffs in order to deliver the current version of a record in real-time. The metadata story for real-time, however, doesn’t stop at indices, as the army of metadata playing cards are central to the notion of declarative programming.

cardsWe have thus come full circle to the notion of reactive programming, which includes declaratively defining the behavior of pieces of software as simply as entering formulas into cells in a spreadsheet. And while a single worksheet may have tens of thousands of cells, extending the role metadata play to a distributed enterprise context ups the ante on the relationship between reactive programming and metadata: being able to resolve the desired behavior of any software given the combination of all metadata in the relevant environment – for every interaction, in real-time.

We call such resolution dynamic constraint satisfaction, where the metadata describe the relevant constraints, even though they may be fully dynamic. Calculating the result, therefore, must take place in real-time. Envision one massive spreadsheet, only instead of formulas in the cells, you have any reactive software you might find anywhere in your IT environment. The cell with your final answer is always correct, and always up to date – in real-time. Off with their heads!

The Intellyx Take

Our adventure down the real-time rabbit hole in this enterprise IT wonderland took us many different places. And while each of the critters we met had its own real-time story, our adventure tied all the individual stories together. Such is the nature of real-time: we have many moving parts and they must all be working at top form together in order to deliver a true real-time experience to each user.

Real-time behavior, therefore, is an important challenge for any digital professional, as there is more to digital transformation than meets the eye. Your customers, partners, and broader audience expect such behavior from your digital efforts, and to keep them happy you need the right technology and most importantly, the right architecture to glue everything together in real-time.

More Stories By Jason Bloomberg

Jason Bloomberg is a leading IT industry analyst, Forbes contributor, keynote speaker, and globally recognized expert on multiple disruptive trends in enterprise technology and digital transformation. He is ranked #5 on Onalytica’s list of top Digital Transformation influencers for 2018 and #15 on Jax’s list of top DevOps influencers for 2017, the only person to appear on both lists.

As founder and president of Agile Digital Transformation analyst firm Intellyx, he advises, writes, and speaks on a diverse set of topics, including digital transformation, artificial intelligence, cloud computing, devops, big data/analytics, cybersecurity, blockchain/bitcoin/cryptocurrency, no-code/low-code platforms and tools, organizational transformation, internet of things, enterprise architecture, SD-WAN/SDX, mainframes, hybrid IT, and legacy transformation, among other topics.

Mr. Bloomberg’s articles in Forbes are often viewed by more than 100,000 readers. During his career, he has published over 1,200 articles (over 200 for Forbes alone), spoken at over 400 conferences and webinars, and he has been quoted in the press and blogosphere over 2,000 times.

Mr. Bloomberg is the author or coauthor of four books: The Agile Architecture Revolution (Wiley, 2013), Service Orient or Be Doomed! How Service Orientation Will Change Your Business (Wiley, 2006), XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996). His next book, Agile Digital Transformation, is due within the next year.

At SOA-focused industry analyst firm ZapThink from 2001 to 2013, Mr. Bloomberg created and delivered the Licensed ZapThink Architect (LZA) Service-Oriented Architecture (SOA) course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, which was acquired by Dovel Technologies in 2011.

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting), and several software and web development positions.

Latest Stories
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Adding public cloud resources to an existing application can be a daunting process. The tools that you currently use to manage the software and hardware outside the cloud aren’t always the best tools to efficiently grow into the cloud. All of the major configuration management tools have cloud orchestration plugins that can be leveraged, but there are also cloud-native tools that can dramatically improve the efficiency of managing your application lifecycle. In his session at 18th Cloud Expo, ...
Transformation Abstract Encryption and privacy in the cloud is a daunting yet essential task for both security practitioners and application developers, especially as applications continue moving to the cloud at an exponential rate. What are some best practices and processes for enterprises to follow that balance both security and ease of use requirements? What technologies are available to empower enterprises with code, data and key protection from cloud providers, system administrators, inside...
With the proliferation of both SQL and NoSQL databases, organizations can now target specific fit-for-purpose database tools for their different application needs regarding scalability, ease of use, ACID support, etc. Platform as a Service offerings make this even easier now, enabling developers to roll out their own database infrastructure in minutes with minimal management overhead. However, this same amount of flexibility also comes with the challenges of picking the right tool, on the right ...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
Evan Kirstel is an internationally recognized thought leader and social media influencer in IoT (#1 in 2017), Cloud, Data Security (2016), Health Tech (#9 in 2017), Digital Health (#6 in 2016), B2B Marketing (#5 in 2015), AI, Smart Home, Digital (2017), IIoT (#1 in 2017) and Telecom/Wireless/5G. His connections are a "Who's Who" in these technologies, He is in the top 10 most mentioned/re-tweeted by CMOs and CIOs (2016) and have been recently named 5th most influential B2B marketeer in the US. H...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
"We do one of the best file systems in the world. We learned how to deal with Big Data many years ago and we implemented this knowledge into our software," explained Jakub Ratajczak, Business Development Manager at MooseFS, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Today, we have more data to manage than ever. We also have better algorithms that help us access our data faster. Cloud is the driving force behind many of the data warehouse advancements we have enjoyed in recent years. But what are the best practices for storing data in the cloud for machine learning and data science applications?
All zSystem customers have a significant new business opportunity to extend their reach to new customers and markets with new applications and services, and to improve the experience of existing customers. This can be achieved by exposing existing z assets (which have been developed over time) as APIs for accessing Systems of Record, while leveraging mobile and cloud capabilities with new Systems of Engagement applications. In this session, we will explore business drivers with new Node.js apps ...
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more than 24 years of IT Operations experience with a focus on highly-scalable architectures.
The technologies behind big data and cloud computing are converging quickly, offering businesses new capabilities for fast, easy, wide-ranging access to data. However, to capitalize on the cost-efficiencies and time-to-value opportunities of analytics in the cloud, big data and cloud technologies must be integrated and managed properly. Pythian's Director of Big Data and Data Science, Danil Zburivsky will explore: The main technology components and best practices being deployed to take advantage...
For years the world's most security-focused and distributed organizations - banks, military/defense agencies, global enterprises - have sought to adopt cloud technologies that can reduce costs, future-proof against data growth, and improve user productivity. The challenges of cloud transformation for these kinds of secure organizations have centered around data security, migration from legacy systems, and performance. In our presentation, we will discuss the notion that cloud computing, properl...