Welcome!

News Feed Item

3D Bioprinting Market, 2014-2030

LONDON, Sept. 4, 2014 /PRNewswire/ -- Reportbuyer.com has added a new market research report:

3D Bioprinting Market, 2014-2030

https://www.reportbuyer.com/product/2049937/3D-Bioprinting-Market-2014-2030.html

INTRODUCTION

The 3D printing industry has come a long way over the last many years; the technology has the potential of revolutionising the way things occur currently. Many industries have already benefitted from multiple advancements in this field, resulting in improved and more efficient processes worldwide. A quick look at www.3dprintingchannel.com suggests that 3D printing has multi-faceted dimensions; the technology has recently been used in varied industries such as automotive, medical, business, industrial equipments, education, architecture, and consumer products. There is a widespread optimism that it is likely to gain prominence in the coming years and have a far reaching impact on our daily lives.

Within healthcare, 3D printed prosthetics and implants have already been in the market for some years. Layerwise from Belgium and Xilloc from Netherlands are the major companies dealing with 3D printed medical and dental implants. Xilloc was in the news recently for creating the first customized 3D-printed lower jaw for an 83-year old patient with a serious jaw infection. Another company, Oxford Performance Materials, from USA, received FDA approval for a 3D printed implant that replaced 75% of a man's skull.

Specifically, 3D bioprinting is gradually emerging as an area which is garnering attention from a lot of academicians. Some of these researchers have also recently opened start-up firms with the aim of commercialising the technology over the next decade or so.

SCOPE OF THE REPORT

The '3D Bioprinting, 2014 - 2030' report provides an extensive study of the emerging market of 3D bioprinting, specifically focusing on commercial bioprinters and those under development, their applications and the likely future evolution. It is widely anticipated that the 3D bioprinting market has tremendous potential: it requires hardware (bioprinters), software (CAD), biocompatible materials (bio-ink and bio-paper), each of which has the capability to grow into separate niche industries. The report covers various aspects such as technological progress, product pipeline, industry and academic research programs and regulatory concerns to assess new evolving opportunities.

One of the key objectives of this report is to understand the current and future state of the bioprinters and products derived thereof. This is done by analysing the following:
- Commercial 3D Bioprinters currently available in the market
- Innovations of academic groups across various research institutes across the globe
- Competing technologies with similar applications in the healthcare industry
- Size of target consumer segments
- The widening supply-demand gap, specifically for organ transplants.

The base year for the report is 2014. The report provides short-mid term and long term market forecasts for the period 2014 - 2024 and 2024 - 2030, respectively. We have discussed, in detail, key drivers behind the likely growth of 3D bioprinting market. The research, analysis and insights presented in this report include the sales potential of various 3D bioprinted products based on the current expected market launch timelines, their adoption rates and the estimated end-use price points. The figures mentioned in this report are in USD, unless otherwise specified.

EXAMPLE HIGHLIGHTS

1. As of today, the industry is primarily focused on research and development; apart from the limited number of industry initiatives, academic groups worldwide are involved in exemplary research in the field of 3D bioprinting.
2. A number of start-ups have recently sprung up to develop products based on bioprinting; some of these are spin outs from university research. Examples include TeViDo BioDevices (focused on printing breast tissue), Aspect Biosystems (focused on printing tissue models for toxicity testing) and SkinPrint (focused on developing human skin).
3. The market currently has 14 industry sponsored bioprinters, focused on a variety of commercial applications. The widening supply-demand gap for organ transplants is a huge unmet need; the eventual goal of researchers is to be able to produce bioprinted organs for organ transplants.
4. As the development progresses, the next generation of bioprinters are likely to offer additional features (e.g. multiple arms) and are likely to be relatively more affordable driving wider adoption.
5. We believe that the market will progress gradually over the coming decade; however, the focus is likely to shift from research to commercialisation by the second half of next decade. At this stage, applications such as drug testing and tissue engineering (skin and cartilage) are likely to be popular.
6. By 2030, we predict 3D bioprinting to be a multi-billion dollar industry; early success of bioprinted organ transplants is likely to provide additional boost in subsequent years.

RESEARCH METHODOLOGY

Most of the data presented in this report has been gathered by secondary research. We have also conducted interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will shape up across different regions and drug segments. Where possible, the available data has been checked for accuracy from multiple sources of information.

The secondary sources of information include
1. Annual reports
2. Investor presentations
3. SEC filings
4. Industry databases
5. News releases from company websites
6. Government policy documents
7. Other analysts' opinion reports

While the focus has been on forecasting the market over the coming ten years, the report also provides our independent view on various technological and non-commercial trends emerging in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market gathered from various secondary and primary sources of information.

CHAPTER OUTLINES

Chapter 2 provides an executive summary of the insights captured in our research. The summary offers a high level view on where the 3D bioprinting market is headed in the mid-long term.

Chapter 3 provides a general introduction to 3D bioprinting. We have discussed, in detail, the origins of 3D printing and recent developments which have shaped the industry so far. The chapter also elaborates on the 'bioprinting' process, current and future applications, and the challenges which have to be overcome before wider adoption of the technology.

Chapter 4 provides an overview of the 3D bioprinting market with respect to the available bioprinting technologies and companies active in the field. The analysis also extends to regional evolution and the key drivers which will determine the future growth.

Chapter 5 offers a comprehensive review of the major bioprinters which have been made available by leading companies in the market. We present profiles of eight technologies with information about their origin, printing process, applications, principal features, current status and expected future evolution.

Chapter 6 reviews, in detail, the major bioprinters offered by academic institutions dominant in the field. We present profiles of five leading technologies with information about their origin, printing process, applications, principal features, current status and likely future evolution.

Chapter 7 analyses the current and future state of the worldwide market of 3D bioprinting. The chapter includes our estimates of the value of the market for end-user applications till 2030. Given the current niche nature of the technology, we have done a multi-variate sensitivity analysis to present three different tracks of industry's evolution.

Chapter 8 provides our analysis of the strengths, weaknesses, opportunities and threats in the 3D bioprinting market, capturing the key elements likely to influence future growth.

Chapter 9 provides case studies on Organovo and regenHU, two companies active in the 3D bioprinting arena. The case studies include detailed analysis of financial performance (where available), marketed / pipeline bioprinting products, recent developments, and future focus areas.

Chapter 10 is a collection of six transcripts based on our discussion with some of the leading players in the industry. The companies / academic institutes interviewed include n3D Biosciences, regenHU, Sciperio / nScrypt, MicroFab Technologies, Digilab and TeVido BioDevices.

Chapter 11 summarises the overall report. In this chapter, we provide a recap of the key takeaways and our independent opinion based on the research and analysis described in previous chapters.

Chapters 12 and 13 are appendices, which provide the list of companies and tabulated data for all the figures presented in the report.

1. PREFACE
1.1. Scope of the Report
1.2. Research Methodology
1.3. Chapter Outlines

2. EXECUTIVE SUMMARY

3. INTRODUCTION
3.1. Chapter Overview
3.2. 3D Printing Technology
3.2.1. What is 3D Printing?
3.2.2. Historical Evolution
3.3. 3D Bioprinting Process And Components
3.4. Entry of 3D Printing into Medical Arena
3.4.1. Key Players
3.4.2. 3D Bioprinting Applications
3.4.2.1. Toxicity Screening / Drug Testing
3.4.2.2. Tissue Engineering
3.4.2.3. Organ Replacement via Organ Printing
3.4.3. Challenges
3.4.3.1. High Initial Cost
3.4.3.2. Regulatory Issues
3.4.3.3. Functional Aspects Not Yet Fully Tested
3.4.3.4. Limited Capability for Complicated Tissues and Organs
3.4.3.5. Hurts Moral and Religious Beliefs

4. MARKET OVERVIEW
4.1. Chapter Overview
4.2. Limited Professional Bioprinters in Market
4.3. Prices are Largely Prohibitive
4.4. The US is Leading the Efforts; Developing Countries Have Begun to Contribute
4.5. Start-ups Emerging as Key Players
4.6. Bioprinting: Finding its Root in University Research
4.7. Development of Multi-Arm Bioprinters: The Next Generation of Bioprinters

5. PROFILES: COMMERCIAL BIOPRTINERS AND PRODUCTS
5.1. Chapter Overview

5.2. Novogen MMX - Organovo
5.2.1. Overview and Origin
5.2.2. Development of NovoGen MMX
5.2.3. Patents
5.2.4. Awards and Accomplishments
5.2.5. The Bioprinting Process
5.2.6. Bio-ink
5.2.7. Key Features
5.2.8. Applications
5.2.8.1. Microtissues for Drug Discovery and Research
5.2.8.2. Longer Term, Organ Printing for Transplantation
5.2.8.3. Regenerative Medicine
5.2.9. Partnerships and Agreements
5.2.9.1. Pfizer
5.2.9.2. United Therapeutics
5.2.9.3. Autodesk
5.2.9.4. ZenBio
5.2.9.5. OHSU
5.2.9.6. Roche
5.2.9.7. Methuselah Foundation
5.2.9.8. NIH

5.3. 3D-Bioplotter - EnvisionTEC
5.3.1. Overview and Origin
5.3.2. The Bioprinting Process
5.3.3. Applications
5.3.3.1. Provides 'smart' scaffolds for tissue engineering
5.3.3.2. Cell and Tissue Printing
5.3.3.3. 3D-Anatomical Models for Study
5.3.4. Key Features
5.3.5. Academic Institutions using 3D Bioplotter

5.4. BioFactory - regenHU
5.4.1. Overview and Origin
5.4.2. Features
5.4.3. Research Collaborations
5.4.3.1. ETH, Zurich
5.4.3.2. ZHAW
5.4.4. Applications

5.5. BioAssembly Tool - Sciperio / nScrypt
5.5.1. Overview and Origin
5.5.2. The Bioprinting Process
5.5.3. Key Features
5.5.3.1. SmartPump
5.5.4. Collaborations
5.5.4.1. Cardiovascular Innovation Institute
5.5.5. Awards / Accomplishments
5.5.6. Applications
5.5.6.1. Bioficial Heart
5.5.6.2. Other Tissues

5.6. Microfluidic-based Bioprinting Platform - Aspect Biosystems
5.6.1. Overview and Origin
5.6.2. The Bioprinting Process
5.6.3. Key Features
5.6.4. Building Tissue Constructs For Drug Discovery
5.6.5. Awards
5.6.5.1. MEMSCAP Design Award 2013
5.6.5.2. Federal Support Through IRAP

5.7. Modified Ink-jet Bioprinter - TeVido BioDevices
5.7.1. Overview and Origin
5.7.2. Awards/Accomplishments
5.7.3. The Bioprinting Process
5.7.4. Key Features
5.7.5. Applications
5.7.5.1. Breast Reconstruction
5.7.5.2. Drug Testing
5.7.5.3. Other Reconstructive Tissue Products
5.7.5.4. Treatment for Chronic Wounds
5.7.5.5. Breast Augmentation

5.8. Other Initiatives
5.8.1. SkinPrint
5.8.2. 3DDiscovery - regenHU
5.8.2.1. Key Features
5.8.2.2. Research Collaborations

6. PRODUCT PROFILES: ACADEMIC INSTITUTES
6.1. Chapter Overview

6.2. BioPen - University of Wollongong / St. Vincent Hospital
6.2.1. Overview and Origin
6.2.2. The Bioprinting Process
6.2.3. Advantages of BioPen
6.2.4. Applications

6.3. Modified Ink-jet Bioprinter for Skin Cells - Wake Forest Institute for Regenerative Medicine / Armed Forces Institute For Regenerative Medicine
6.3.1. Overview
6.3.2. The Bioprinting Process
6.3.3. Key Features
6.3.4. Bioprinting Human Skin
6.3.5. Awards / Accomplishments

6.4. Modified Ink-jet Printer for Tissues and Organs - Wake Forest Institute for Regenerative Medicine
6.4.1. Overview
6.4.2. The Bioprinting Process
6.4.3. Applications
6.4.3.1. Tissue Patches
6.4.3.2. Potential to Print Organs
6.4.3.3. Organs on a Chip
6.4.4. Awards/Accomplishments

6.5. Regenovo - Hangzhou Dianzi University, China
6.5.1. Overview
6.5.2. The Bioprinting Process
6.5.3. Key Features
6.5.4. Limitations
6.5.5. Applications

6.6. Valve Based Technology - Heriot-Watt University / Roslin Cellab
6.6.1. Overview and Origin
6.6.2. The Bioprinting Process
6.6.3. Key Features
6.6.4. Applications
6.6.4.1. Drug Testing for Pharmaceutical Research
6.6.4.2. Tissue Regeneration
6.6.4.3. Custom-built Replacement Organs
6.6.5. Awards / Accomplishments
6.6.6. Collaborations
6.6.6.1. Reinnervate Ltd.

7. MARKET FORECAST
7.1. Chapter Overview
7.2. Forecast Methodology
7.3. The 3D Bioprinting Market, 2014 - 2030
7.3.1. Background
7.3.2. Market Forecast: Drug Testing (Base Scenario)
7.3.3. Market Forecast: 3D Bioprinted Skin (Base Scenario)
7.3.4. Market Forecast: 3D Printed Cartilage Replacement (Base Scenario)
7.3.5. Market Forecast: 3D Printed Organ Transplants (Base Scenario)
7.3.6. Overall Market Forecast (Base Scenario)

8. SWOT ANALYSIS
8.1. Chapter Overview
8.2. Strengths
8.2.1. Faster Drug Discovery
8.2.2. A Quality Alternative to Animal Testing
8.3. Weaknesses
8.3.1. High Initial Investment
8.3.2. Integration of Vascular Network
8.4. Opportunities
8.4.1. Low Entry Barriers
8.4.2. Growing Wait List for Organ Transplants – A Huge Unmet Need
8.5. Threats
8.5.1. Regulatory Barrier
8.5.2. Commercial 3D Cell Culture Systems

9. CASE STUDIES
9.1. Organovo Holdings, Inc.
9.2. regenHU

10. INTERVIEW TRANSCRIPTS
10.1. Interview 1: n3D Biosciences (Glauco R. Souza, President and CSO & Hubert Tseng, Senior Research Scientist)
10.2. Interview 2: regenHU (Marc Thurner, CEO)
10.3. Interview 3: Sciperio / nScrypt (Kenneth Church, President and CEO & Xudong Chen, Vice President)
10.4. Interview 4: MicroFab Technologies (Anonymous)
10.5. Interview 5: Digilab (Dr. Igor Zlatkin, Application Scientist & Chirantan Kanani, Technology and Product Development)
10.6. Interview 6: TeVido BioDevices (Laura Bosworth, CEO and Co-Founder)

11. CONCLUSION
11.1. 3D Bioprinting has Emerged Well Since Inception
11.2. Commercial Bioprinters Are Limited; Research Labs and Spin-outs from Academia Continue to Progress
11.3. Organ Supply - Demand Gap: A Major Growth Driver
11.4. Overall a Multi-billion Dollar Opportunity by 2030
11.5. Challenges Exist Before Bioprinting Becomes Mainstream

12. APPENDIX 1: LIST OF COMPANIES AND ORGANISATIONS

13. APPENDIX 2: TABLES
?

LIST OF FIGURES

Figure 3.1 The 'Bioprinting' Process
Figure 4.1 Industry Sponsored Bioprinters: Regional Distribution
Figure 4.2 Industry Sponsored Bioprinters: Distribution by Status
Figure 4.3 University Sponsored Bioprinters: Regional Distribution
Figure 5.1 Bioplotter: Printing Process
Figure 7.1 Drug Testing Market, Short-Mid Term, Base Scenario (USD MM)
Figure 7.2 Drug Testing Market, Long Term, Base Scenario (USD MM)
Figure 7.3 3D Bioprinted Skin Market, Short-Mid Term, Base Scenario (USD MM)
Figure 7.4 3D Bioprinted Skin Market, Long Term, Base Scenario (USD MM)
Figure 7.5 3D Bioprinted Cartilage Replacement Market, Short-Mid Term, Base Scenario (USD MM)
Figure 7.6 3D Bioprinted Cartilage Replacement Market, Long Term, Base Scenario (USD MM)
Figure 7.7 3D Bioprinted Organ Transplants, Long Term, Base Scenario (USD MM)
Figure 7.8 Overall 3D Bioprinted Products Market, Short-Mid Term, Base Scenario (USD MM)
Figure 7.9 Overall 3D Bioprinted Products Market, Long Term, Base Scenario (USD MM)
Figure 10.1 Process of Magnetic Bioprinting
Figure 10.2 3D Cell Bioprinting: Magnetically Beyond Rings and Dots
Figure 10.3 n3D vs. Organovo 3D Bioprinting
Figure 11.1 3D Bioprinting Market, 2018, 2024, 2030 (USD MM)
Figure 11.2 3D Bioprinting: The Driving Forces
?

LIST OF TABLES

Table 3.1 RepRap Project: 3D Printing Machines
Table 3.2 Inputs for 3D Bioprinting
Table 4.1 List of Bioprinters: Industry Sponsored
Table 4.2 Companies Developing Bioprinted Products for Commercial Purposes
Table 4.3 Universities Working in the Area of Bioprinting
Table 5.1 NovoGen MMX: Patent Portfolio
Table 5.2 Materials Used for Scaffolds
Table 5.3 SmartPump - Models and Features
Table 7.1: 3D Bioprinted Applications: Launch Timeline
Table 7.2 3D Bioprinted Skin: Competitive Landscape
Table 8.1 SWOT Analysis
Table 8.2 3D Cell Culture Systems
Table 9.1 3D Liver Assays - Launch Timeline
Table 9.2 Organovo's Plans for Revenue Generation from 3D Bioprinted Liver
Table 9.3 Organovo Revenues – 2011, 2012, and Q1 2013
Table 9.4 regenHU: 3D Bioprinting Product Portfolio
Table 13.1 Industry Sponsored Bioprinters: Regional Distribution
Table 13.2 Industry Sponsored Bioprinters: Distribution by Status
Table 13.3 University Sponsored Bioprinters: Regional Distribution
Table 13.4 Drug Testing Market, Short-Mid Term, Base Scenario (USD MM)
Table 13.5 Drug Testing Market, Long Term, Base Scenario (USD MM)
Table 13.6 Drug Testing Market, Short-Mid Term, Conservative Scenario (USD MM)
Table 13.7 Drug Testing Market, Long Term, Conservative Scenario (USD MM)
Table 13.8 Drug Testing Market, Short-Mid Term, Optimistic Scenario (USD MM)
Table 13.9 Drug Testing Market, Long Term, Optimistic Scenario (USD MM)
Table 13.10 3D Bioprinted Skin Market, Short-Mid Term, Base Scenario (USD MM)
Table 13.11 3D Bioprinted Skin Market, Long Term, Base Scenario (USD MM)
Table 13.12 3D Bioprinted Skin Market, Short-Mid Term, Conservative Scenario (USD MM)
Table 13.13 3D Bioprinted Skin Market, Long Term, Conservative Scenario (USD MM)
Table 13.14 3D Bioprinted Skin Market, Short-Mid Term, Optimistic Scenario (USD MM)
Table 13.15 3D Bioprinted Skin Market, Long Term, Optimistic Scenario (USD MM)
Table 13.16 3D Bioprinted Cartilage Replacement Market, Short-Mid Term, Base Scenario (USD MM)
Table 13.17 3D Bioprinted Cartilage Replacement Market, Long Term, Base Scenario (USD MM)
Table 13.18 3D Bioprinted Cartilage Replacement Market, Short-Mid Term, Conservative Scenario (USD MM)
Table 13.19 3D Bioprinted Cartilage Replacement Market, Long Term, Conservative Scenario (USD MM)
Table 13.20 3D Bioprinted Cartilage Replacement Market, Short-Mid Term, Optimistic Scenario (USD MM)
Table 13.21 3D Bioprinted Cartilage Replacement Market, Long Term, Optimistic Scenario (USD MM)
Table 13.22 3D Bioprinted Organ Transplants, Long Term, Base Scenario (USD MM)
Table 13.23 3D Bioprinted Organ Transplants, Long Term, Conservative Scenario (USD MM)
Table 13.24 3D Bioprinted Organ Transplants, Long Term, Optimistic Scenario (USD MM)
Table 13.25 3D Bioprinted Products Market, Short-Mid Term, Base Scenario (USD MM)
Table 13.26 3D Bioprinted Products Market, Long Term, Base Scenario (USD MM)
Table 13.27 3D Bioprinted Products Market, Short-Mid Term, Conservative Scenario (USD MM)
Table 13.28 3D Bioprinted Products Market, Long Term, Conservative Scenario (USD MM)
Table 13.29 3D Bioprinted Products Market, Short-Mid Term, Optimistic Scenario (USD MM)
Table 13.30 3D Bioprinted Products Market, Long Term, Optimistic Scenario (USD MM)

The following companies have been mentioned in the report.

1. 3D Biotek
2. 3D Systems
3. Advanced Biomatrix
4. Amgen
5. Aspect Biosystems
6. Asyril
7. Autodesk
8. Avita Medical
9. BD Biosciences
10. Bespoke Innovations
11. Bio3D Technologies
12. CellASIC
13. CMC Microsystems
14. Cornell
15. CP Automation
16. Cuspis LLC
17. Cyfuse Biomedical
18. Cyprotex
19. Digilab
20. DTM
21. EnvisionTEC
22. GlycosanBiosystems
23. Hangzhou Dianzi University, China
24. Helisys Inc.
25. Heriot-Watt University
26. i.materialise
27. ImmunoGen
28. InSphero AG
29. Invetech
30. Invetechon
31. Invitrogen
32. Kor Ecologic
33. Layerwise
34. MakerBot Industries
35. Mayoclinic
36. Methuselah Foundation
37. MicroFab Technologies
38. Modern Meadows
39. n3D Biosciences
40. Nano3D Biosciences
41. National Institute of Health
42. Neatco
43. NovoGen
44. Objective 3D
45. Objet Geometries Ltd
46. Organovo Holdings, Inc.
47. Oregon Health & Science University
48. Oxford Performance Materials
49. Pfizer
50. QGel
51. Rainbow Biosciences
52. regenHU
53. Reinnervate
54. Roche
55. Roland DG Corporation
56. Roslin Cellab
57. Sanofi
58. Sciperio / nScrypt
59. Scivax
60. Seattle Genetics
61. SkinPrint
62. Solidscape
63. Stratasys
64. Tengion
65. TeVido BioDevices
66. The Technology Partnership
67. Unique Technology
68. United Therapeutics
69. Vidi
70. Vivos Dental
71. Wake Forest Institute for Regenerative Medicine
72. Widex
73. Xilloc
74. Xillocto
75. Z Corporation
76. ZenBio
77. Zurich University of Applied Sciences
78. Zyoxel

Read the full report:
3D Bioprinting Market, 2014-2030

https://www.reportbuyer.com/product/2049937/3D-Bioprinting-Market-2014-2030.html

For more information:
Sarah Smith
Research Advisor at Reportbuyer.com
Email: [email protected]  
Tel: +44 208 816 85 48
Website: www.reportbuyer.com

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
Bert Loomis was a visionary. This general session will highlight how Bert Loomis and people like him inspire us to build great things with small inventions. In their general session at 19th Cloud Expo, Harold Hannon, Architect at IBM Bluemix, and Michael O'Neill, Strategic Business Development at Nvidia, discussed the accelerating pace of AI development and how IBM Cloud and NVIDIA are partnering to bring AI capabilities to "every day," on-demand. They also reviewed two "free infrastructure" pr...
In his session at Cloud Expo, Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, provideed economic scenarios that describe how the rapid adoption of software-defined everything including cloud services, SDDC and open networking will change GDP, industry growth, productivity and jobs. This session also included a drill down for several industries such as finance, social media, cloud service providers and pharmaceuticals.
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"ReadyTalk is an audio and web video conferencing provider. We've really come to embrace WebRTC as the platform for our future of technology," explained Dan Cunningham, CTO of ReadyTalk, in this SYS-CON.tv interview at WebRTC Summit at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Infrastructure is widely available, but who’s managing inbound/outbound traffic? Data is created, stored, and managed online – who is protecting it and how? In his session at 19th Cloud Expo, Jaeson Yoo, SVP of Business Development at Penta Security Systems Inc., discussed how to keep any and all infrastructure clean, safe, and efficient by monitoring and filtering all malicious HTTP/HTTPS traffic at the OSI Layer 7. Stop attacks and web intruders before they can enter your network.
@DevOpsSummit taking place June 6-8, 2017 at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @DevOpsSummit at Cloud Expo New York Call for Papers is now open.
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Dave McCarthy, Director of Products at Bsquare Corporation; Alan Williamson, Principal...
Businesses and business units of all sizes can benefit from cloud computing, but many don't want the cost, performance and security concerns of public cloud nor the complexity of building their own private clouds. Today, some cloud vendors are using artificial intelligence (AI) to simplify cloud deployment and management. In his session at 20th Cloud Expo, Ajay Gulati, Co-founder and CEO of ZeroStack, will discuss how AI can simplify cloud operations. He will cover the following topics: why clou...
Video experiences should be unique and exciting! But that doesn’t mean you need to patch all the pieces yourself. Users demand rich and engaging experiences and new ways to connect with you. But creating robust video applications at scale can be complicated, time-consuming and expensive. In his session at @ThingsExpo, Zohar Babin, Vice President of Platform, Ecosystem and Community at Kaltura, discussed how VPaaS enables you to move fast, creating scalable video experiences that reach your aud...
Cloud Expo, Inc. has announced today that Andi Mann returns to 'DevOps at Cloud Expo 2017' as Conference Chair The @DevOpsSummit at Cloud Expo will take place on June 6-8, 2017, at the Javits Center in New York City, NY. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the great t...
Rapid innovation, changing business landscapes, and new IT demands force businesses to make changes quickly. In the eyes of many, containers are at the brink of becoming a pervasive technology in enterprise IT to accelerate application delivery. In this presentation, attendees learned about the: The transformation of IT to a DevOps, microservices, and container-based architecture What are containers and how DevOps practices can operate in a container-based environment A demonstration of how ...
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
"At ROHA we develop an app called Catcha. It was developed after we spent a year meeting with, talking to, interacting with senior citizens watching them use their smartphones and talking to them about how they use their smartphones so we could get to know their smartphone behavior," explained Dave Woods, Chief Innovation Officer at ROHA, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.