Welcome!

Related Topics: Java IoT

Java IoT: Article

Are You Using Abstract Classes, Polymorphism, and Interfaces?

Are You Using Abstract Classes, Polymorphism, and Interfaces?

If the answer is no, at a minimum your project needs a code review.

Let's work on the following assignment: a company has employees and consultants. Design classes with and without the use of inheritance to represent the people who work for this company. The classes should have the following methods:

 

  • changeAddress
  • promote
  • giveDayOff
  • raiseSalary

Promotion means giving one day off and raising the salary by a specified percentage. For employees, the method raiseSalary should raise the yearly salary and, for consultants, it should increase their hourly rate.

Abstract Classes
A class is called abstract if it has at least one abstract (not implemented) method. The keyword abstract has to be placed in the definition of the method(s) and the class itself. For example, the class in Listing 1 has three concrete methods and one abstract. (The link to the source code is available below the article)

Abstract classes cannot be instantiated, but they allow you to create superclasses that implement some of the functionality, while leaving one or more methods to be implemented in subclasses.

The class Person can contain dozens of concrete methods that are the same for every person, such as changeAddress and giveDayOff, but since the process of raising a salary is different for employees and consultants, the method raiseSalary should remain abstract. Please note that even though this method is abstract, it could be called in an abstract class because by the time the concrete class is instantiated, the method will be already implemented. Since we have two types of workers, let's create subclasses Employee and Consultant and implement the method raiseSalary based on different rules (see Listings 2 and 3).

The designer of the class Person may not know the specifics of the raising salary process, but this does not stop him or her from calling the method raiseSalary. Programmers writing subclasses are forced to write an implementation of this method according to its signature declared in the abstract class. If they declare a method raiseSalary with a different argument list, this will be considered method overloading and the subclass will remain abstract. The class Promoter in Listing 4 shows how to use the classes Employee and Consultant for promoting workers.

Polymorphism
A programming language could be considered object-oriented if it supports inheritance, encapsulation, and polymorphism. The first two notions can be easily defined:

  • Inheritance lets you design a class by deriving it from an existing one. This feature allows you to reuse existing code without doing copy and paste. Java provides the keyword extends for declaring inheritance.
  • Encapsulation is the ability to hide and protect data. Java has access-level qualifiers such as public, private, and protected to control who can access class variables and methods. There is also so-called package-level protection, which is automatically engaged if you don't use any of the access-level keywords.
  • Polymorphism, though, is easier to understand through an example. Let's look at the classes Person, Employee, and Consultant from a different angle. We'll populate a Vector, mixing up the instances of classes Employee and Consultant - in real life this information usually comes from a database. For example, a program could get the person's work status from the database and instantiate an appropriate concrete class. The class Promoter (see Listing 4) will give an additional vacation day and increase the salary or hourly rate of every worker by 5%.

Please note that even though we cast every object from the collection workers to the ancestor's type Person in line 17, Listing 4, the variable pers can hold references to its descendent objects. The actual object type will be evaluated during runtime only. This feature of object-oriented languages is called runtime or late binding.

The output of the class Promoter will look as follows:

Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Consultant: Increasing hourly rate by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%

Both classes Employee and Consultant are inherited from the same base class Person. Instead of having different methods for increasing the worker's compensation based on its type, we give a polymorphic behavior to the method raiseSalary, which applies different business logic depending on the type of object from the collection. Even though it looks as if we're calling the same method promote, this is not the case. Since the actual object type is evaluated during runtime, the salary is raised properly according to this particular object's implementation of the method raiseSalary. This is polymorphism in action.

The while loop in the class Promoter will remain the same even if we add some other types of workers inherited from the class Person. For example, to add a new category of worker - a foreign contractor - we'll have to create a class Foreign- Contractor derived from the class Person and implement the method raiseSalary there. The class Promoter will keep casting all these objects to the type Person during runtime and call the method raiseSalary of the proper object.

Polymorphism allows you to avoid using switch or if statements with the expensive operator instanceof. Listing 5 shows an ugly alternative to our while loop from the class Promoter that assumes there is no abstract method raiseSalary, but we have separate promote methods in each subclass of the Person. This code would work slower than the polymorphic version from the class Promoter, and the if statement would have to be modified every time a new type of worker is added.

Interfaces
A similar functionality could be implemented using Java interfaces. We'll keep working with a modified version of the ancestor class Person because it has such useful methods as changeAddress and giveDayOff. But this class doesn't have to be abstract anymore because the method raiseSalary will be moved to a Java interface. The method promote won't be needed; we'd rather make the method giveDayOff available to descendants of the class Person by changing the private access level to protected (see line 8 in Listing 6).

Here's the "interface way" to ensure that each person in the firm receives the proper salary raise despite the differences in payroll calculation.

Let's define an interface Payable in Listing 7. More than one class can implement this interface (see Listing 8). When the class Consultant declares that it implements interface Payable, it promises to write implementations for all methods declared in this interface - in our case it's just one method raiseSalary. Why is it so important that the class will "keep the promise" and implement all the interface's methods? In many cases interface is a description of some behavior. In our case behavior Payable means the existence of the method boolean raiseSalary(int percent). If any other class knows that Employee implements Payable, it can safely call any method declared in the Payable interface (see the interface example in Listing 9).

Let's forget for a moment about employees and consultants and switch to the Java AWT listeners and events. When a class declares that it implements the interface java.awt.Action- Listener, a JVM will call the method actionPerformed on this class whenever the user clicks on the window's button, and in some other cases as well. Try to imagine what would happen if you forgot to include the method actionPerformed in your class. The good news is that your class won't even compile if not all methods declared in the interface were implemented. The java.awt.WindowListener interface declares seven methods, and even if you are interested only in the windowClosing one, you must include six additional empty-bodied methods to compile the class (window adapters simplify this process, but they are beyond the scope of this article).

While both abstract classes and interfaces can ensure that a concrete class will have all required methods, abstract classes can also contain implemented methods, but interfaces can't.

Beside method declarations, interfaces can contain final static variables. For example, let's say we have multiple bonus-level codes used in several classes during the calculation of new salaries. Instead of redefining these constants in every class that needs them, we can create the interface shown in Listing 10.

Now a small change in the class declaration will allow us to use these bonus levels as if they were declared in the class Employee:

public class Employee
implements Payable, Bonus {
...
if (empLevel==JUNIOR_LVL){
//apply the rules for juniors
}
}

public class Consultant
implements Payable, Bonus {
...
}

Java does not allow multiple inheritance, which means a class can't have two independent ancestors, but you can use interfaces as a workaround. As you've seen in the example above, a class can implement multiple interfaces; it just needs to implement all methods declared in all interfaces. If your window needs to process button clicks and window closing events, you can declare a class as follows:

 

class MyWindow implements ActionListener, WindowListener{S}

During evolution, an Employee can obtain multiple behaviors, for example

 

class Employee extends Person
implements Payable, Transferable,
Sueable, Bonus {...}

Consultants such as myself are usually more primitive creatures and can be defined as follows:

class Consultant extends Person
implements Payable, Sueable {...}

But if a program such as Promoter is interested only in Payable functions, it can cast the object only to those interfaces it intends to use, for example:

 

Employee emp = new Employee();
Consultant con = new Consultant();
Payable person1 = (Payable) emp;
Payable person2 = (Payable) con;

Now we're ready to write a second version of the class Promoter that will use the classes Employee and Consultant defined in Listings 8 and 11.

The output of this program will look similar to the output of the class Promoter from Listing 4:

Class Employee:Increasing salary by 5%
Class Consultant: Increasing hourly rate by 5%
Class Employee:Increasing salary by 5%
Class Employee:Increasing salary by 5%

Line 18 of Listing 9 may look a little confusing: How can we call a concrete method raiseSalary on a variable of an interface type? Actually we call a method on a concrete instance of the Employee or a Consultant, but by casting this instance to the type Payable we are just letting the JVM know that we're only interested in the methods that were declared in this particular interface.

Java Technical Interviews
During the technical interviews, probably the most frequently asked question is, "What's the difference between Java abstract classes and interfaces?" While interviewing Java programmers, I also found out that only half of the job applicants could properly complete the assignment described at the beginning of this article.

During the job interview your answers should be clear and short; you won't even have a chance to use all the material presented here. Here's one version of the answer to our problem.

If two classes have lots of common functionality, but some methods should be implemented differently, you could create a common abstract ancestor Person and two subclasses Employee and Consultant. The method raiseSalary must be declared abstract in the class Person while other methods should be concrete. This way we ensure that the subclasses do have the method named raiseSalary with a known signature, so we could use it in the ancestor without knowing its implementation. Java interfaces should also be considered in cases when the same method must be implemented in multiple classes - in this case we do not need to use abstract ancestors. Actually, interfaces could be your only option if a class already has an ancestor that can not be changed.

One good interview technique is to impress the interviewer by elaborating on a related topic. Discussion of abstract classes and interfaces gives you a good opportunity to show your understanding of polymorphism.

Summary
Use of abstract classes, interfaces, and polymorphism improves the design of any project by making it more readable and easily extensible. This also makes your code more compact and elegant.

More Stories By Yakov Fain

Yakov Fain is a Java Champion and a co-founder of the IT consultancy Farata Systems and the product company SuranceBay. He wrote a thousand blogs (http://yakovfain.com) and several books about software development. Yakov authored and co-authored such books as "Angular 2 Development with TypeScript", "Java 24-Hour Trainer", and "Enterprise Web Development". His Twitter tag is @yfain

Comments (4)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
As you know, enterprise IT conversation over the past year have often centered upon the open-source Kubernetes container orchestration system. In fact, Kubernetes has emerged as the key technology -- and even primary platform -- of cloud migrations for a wide variety of organizations. Kubernetes is critical to forward-looking enterprises that continue to push their IT infrastructures toward maximum functionality, scalability, and flexibility. As they do so, IT professionals are also embr...
Docker and Kubernetes are key elements of modern cloud native deployment automations. After building your microservices, common practice is to create docker images and create YAML files to automate the deployment with Docker and Kubernetes. Writing these YAMLs, Dockerfile descriptors are really painful and error prone.Ballerina is a new cloud-native programing language which understands the architecture around it - the compiler is environment aware of microservices directly deployable into infra...
Apptio fuels digital business transformation. Technology leaders use Apptio's machine learning to analyze and plan their technology spend so they can invest in products that increase the speed of business and deliver innovation. With Apptio, they translate raw costs, utilization, and billing data into business-centric views that help their organization optimize spending, plan strategically, and drive digital strategy that funds growth of the business. Technology leaders can gather instant recomm...
In an age of borderless networks, security for the cloud and security for the corporate network can no longer be separated. Security teams are now presented with the challenge of monitoring and controlling access to these cloud environments, at the same time that developers quickly spin up new cloud instances and executives push forwards new initiatives. The vulnerabilities created by migration to the cloud, such as misconfigurations and compromised credentials, require that security teams t...
Blockchain has shifted from hype to reality across many industries including Financial Services, Supply Chain, Retail, Healthcare and Government. While traditional tech and crypto organizations are generally male dominated, women have embraced blockchain technology from its inception. This is no more evident than at companies where women occupy many of the blockchain roles and leadership positions. Join this panel to hear three women in blockchain share their experience and their POV on the futu...
Serverless Architecture is the new paradigm shift in cloud application development. It has potential to take the fundamental benefit of cloud platform leverage to another level. "Focus on your application code, not the infrastructure" All the leading cloud platform provide services to implement Serverless architecture : AWS Lambda, Azure Functions, Google Cloud Functions, IBM Openwhisk, Oracle Fn Project.
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm. In their Day 3 Keynote at 20th Cloud Expo, Chris Brown, a Solutions Marketing Manager at Nutanix, and Mark Lav...
AI and machine learning disruption for Enterprises started happening in the areas such as IT operations management (ITOPs) and Cloud management and SaaS apps. In 2019 CIOs will see disruptive solutions for Cloud & Devops, AI/ML driven IT Ops and Cloud Ops. Customers want AI-driven multi-cloud operations for monitoring, detection, prevention of disruptions. Disruptions cause revenue loss, unhappy users, impacts brand reputation etc.
The platform combines the strengths of Singtel's extensive, intelligent network capabilities with Microsoft's cloud expertise to create a unique solution that sets new standards for IoT applications," said Mr Diomedes Kastanis, Head of IoT at Singtel. "Our solution provides speed, transparency and flexibility, paving the way for a more pervasive use of IoT to accelerate enterprises' digitalisation efforts. AI-powered intelligent connectivity over Microsoft Azure will be the fastest connected pat...
Serverless Computing or Functions as a Service (FaaS) is gaining momentum. Amazon is fueling the innovation by expanding Lambda to edge devices and content distribution network. IBM, Microsoft, and Google have their own FaaS offerings in the public cloud. There are over half-a-dozen open source serverless projects that are getting the attention of developers.
CloudEXPO has been the M&A capital for Cloud companies for more than a decade with memorable acquisition news stories which came out of CloudEXPO expo floor. DevOpsSUMMIT New York faculty member Greg Bledsoe shared his views on IBM's Red Hat acquisition live from NASDAQ floor. Acquisition news was announced during CloudEXPO New York which took place November 12-13, 2019 in New York City.
As you know, enterprise IT conversation over the past year have often centered upon the open-source Kubernetes container orchestration system. In fact, Kubernetes has emerged as the key technology -- and even primary platform -- of cloud migrations for a wide variety of organizations. Kubernetes is critical to forward-looking enterprises that continue to push their IT infrastructures toward maximum functionality, scalability, and flexibility. As they do so, IT professionals are also embr...
BMC has unmatched experience in IT management, supporting 92 of the Forbes Global 100, and earning recognition as an ITSM Gartner Magic Quadrant Leader for five years running. Our solutions offer speed, agility, and efficiency to tackle business challenges in the areas of service management, automation, operations, and the mainframe.
The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential. DevOpsSUMMIT at CloudEXPO expands the DevOps community, enable a wide sharing of knowledge, and educate delegates and technology providers alike.
According to the IDC InfoBrief, Sponsored by Nutanix, “Surviving and Thriving in a Multi-cloud World,” multicloud deployments are now the norm for enterprise organizations – less than 30% of customers report using single cloud environments. Most customers leverage different cloud platforms across multiple service providers. The interoperability of data and applications between these varied cloud environments is growing in importance and yet access to hybrid cloud capabilities where a single appl...