Welcome!

Related Topics: Containers Expo Blog, Mobile IoT, @BigDataExpo, @ThingsExpo

Containers Expo Blog: Blog Post

The Future of Hospital Operations Looks like 'Air Traffic Control' | @ThingsExpo #IoT #BigData #Analytics

Predictive analytics is key for healthcare and aviation

The Future of Hospital Operations Looks like "Air Traffic Control"
By Mohan Giridharadas

Explosion of data volumes. Interoperability of systems. Large servers in the sky that can analyze enormous amounts of data, compute complex algorithms in real time, and communicate in microseconds. Mobile communication through devices that patients, providers and staff all carry all the time. What does this all mean for hospital operations? Based on working with dozens of hospitals and conversations with 100+ others, we think the near future of hospital operations is quite exciting. Call it what you will - "Hospital 2.0," "No Waiting Rooms," "Hospital Operations Center" - the basic building blocks to enable the future of hospital operations are already here.

Today, two major shifts are putting pressure on hospitals to rethink how they deliver care: (a) increased demand for care from the Affordable Care Act and the growing number of people with chronic illnesses and (b) the move toward value-based care.

These shifts have big implications across the board, but most importantly in operations. Hospitals are under constant pressure to do more with less. Every day, they face an operational paradox: Scarce resources are both overbooked and underutilized within the same day. This leads to several undesirable outcomes: long patient waiting times, overworked staff, millions of dollars of unnecessary operational costs, and an insatiable appetite for expanding existing facilities or constructing entirely new ones. For specialty services like chemotherapy, it could take days or weeks for a new patient to be given a slot - yet, the typical infusion chair is occupied less than 60 percent over the 7 a.m.-7 p.m. time horizon. The same is true of operating rooms; study after study shows that hospitals don't utilize their resources optimally.

Historically, process improvement efforts in hospitals worked with small, historical snapshots of data from which the core operational issues were identified. From this, strategies were developed, implementation plans executed and the disciplines for continuous improvement were established. This was the best approach when all that was available was rear-view mirror data snapshots and Excel as the analytic engine of choice. Today, there's a lot more data to learn from - on average, health systems produce up to 2 terabytes of data per patient every year. Combined with the explosion of smart devices, computational power in the cloud and the growing pervasiveness of data science and machine learning algorithms, an entirely different realm of operational optimization suddenly becomes possible. It is similar to the realization that decades ago, general surgeons did the best they could from the insight they could glean from grainy X-ray images. Today, armed with high-resolution MRI/PET images and fiber-optic cameras, the same surgeon can execute surgeries an order of magnitude more complex than they could have imagined being able to do when they were surgical residents a few decades ago.

Consider the following scenarios on how predictive analytics is already optimizing patient pathways within hospitals:

- Optimizing access to treatments such as chemotherapy: By looking at historical demand patterns, and operational constraints, sophisticated forecasting algorithms can predict the daily volume and mix of patient volume and orchestrate appointment slots such that there are no "gaps" between treatments. This radically improves chair utilization, lowers patient waiting times and reduces the overall cost of operations. Doing this without sophisticated data science is hard - for example, just arranging the order in which 70 patients can be slotted for their treatments in a 35-chair infusion center is a number exceeding 10^100, as this analysis shows. Trying to solve this problem with pen, paper or Excel is a pointless exercise.

- Operating rooms are key resources within the hospital. Study after study shows that the OR utilization at most large hospitals is at best 50-60 percent. In most hospitals, operating rooms are allocated to surgeons using "blocks" - for simplicity, the blocks are often either half-day or full-day blocks. Even the most prolific and productive surgeons often don't fully utilize the blocks they are given, and the process for reallocating blocks on a monthly basis or even for last minute block swaps is cumbersome and manual. Using data science and machine learning, hospitals can monitor utilization, identify pockets for improvement, automatically reallocate underutilized blocks, and improve overall operating room utilization. A 3-5 point improvement in block utilization is worth $2 million per year for a surgical suite with just four operating rooms.

- In-patient bed capacity is a constraining bottleneck in most hospitals, yet virtually every hospital solves this problem with an arithmetic-based "huddle" approach that reviews the patient census from the overnight stay in each unit, adds known incoming patients, subtracts known discharges and then decides if the unit is flirting with the limits of its available capacity. This cycle repeats itself, often several times per day, with a planning horizon of the day at hand. On the other hand, Google completes the search bar while we are typing because it has analyzed millions of search terms similar to the one you are entering and automatically presents the four or five highest probability queries that you intend to submit. Imagine looking at each overnight patient, finding the 1,000 prior patients over the last two years who entered the hospital with a similar diagnostic or procedure code and reviewing their "flight path" through the hospital (i.e., # days spent in each of the units prior to discharge); then, an aggregate probabilistic assessment of the likely occupancy of each unit could be developed. Not only would it provide a better answer for today, it would also help anticipate the evolving unit capacity situation over the next 5-7 days, thereby leading to smarter operational decisions on transfers, elective surgery rescheduling, etc.

- A similar machine learning approach can help orchestrate patient flows at clinics, labs, the pharmacy and any unit within the hospital network that struggles with the operational paradox of being overbooked and underutilized at the same time.

An interesting metaphor for the future of hospital operations is how the air traffic control and sophisticated scheduling and airport operations have transformed air travel for passengers. They too have enormous complexity and the mission-critical requirement of passenger safety in the face of challenging external conditions. Three direct parallels:

- In order for a single flight to transport passengers safely from point A to point B, it requires "above the wing" services (boarding, food, crew) and "below the wing" services (baggage, fuel, tire check and other inspections) to come together seamlessly. Similarly, in order to perform even a routine surgery, services like labs, pharmacy, the clinician, the surgeon and the supporting team all need to come together to be able to safely and successfully treat the patient.

- At any busy airport, tens of thousands of passengers each day navigate their personal journey across connecting flights while relying on "invisible supporting services" such as their bag transfers and rebookings in the case of delays, weather systems, etc. Similarly, in a busy hospital, on any given day, thousands of patients navigate their personal journey across a continuum of care while relying on the supporting services of labs, pharmacy, etc. to be timely and accurate.

- The volume of airline passengers has grown from a few thousand to a few million per day, and airports and airlines have been forced to do "more with less." Similarly, the Affordable Care Act and a growing and aging population combined with the increased incidence of chronic disease will require hospitals to do "more with less".

The aviation industry has diligently invested in the required technology, systems and processes to monitor, measure, collaborate and orchestrate. Similarly, hospitals are also beginning to invest in the technology, systems and processes to maximize patient access at each "node" and to streamline the linkages across nodes. Just as the advent of air traffic control and fine-grained scheduling transformed airports like JFK from handling only a few hundred flights per day in the 1960s to managing thousands of take offs and landings per day within the same airspace, modern technologies and predictive analytics will lead to the creation of a similar "air traffic control" capability for hospitals. Assets like the OR, inpatient beds, clinics, infusion chairs and MRI machines will be far better utilized throughout the day; many more patients will be treated within the same facilities; and they will need to wait far less between "legs of their flight" across the continuum of care.


Mohan Giridharadas is an accomplished expert in lean methodologies. During his 18-year career at McKinsey & Company (where he was a senior partner/director for six years), he co-created the lean service operations practice and ran the North American lean manufacturing and service operations practices and the Asia-Pacific operations practice. He has helped numerous Fortune 500 companies drive operational efficiency with lean practices. As the founder and CEO of LeanTaaS (a lean and predictive analytics company), Mohan has worked closely with dozens of leading healthcare institutions including Stanford Health Care, UCHealth, UCSF, Wake Forest and more. Mohan holds a B.Tech from IIT Bombay, MS in Computer Science from Georgia Institute of Technology and an MBA from Stanford GSB. He is on the faculty of Continuing Education at Stanford University and UC Berkeley Haas School of Business and has been named by Becker's Hospital Review as one of the top entrepreneurs innovating in Healthcare.

More Stories By LeanTaaS Blog

LeanTaaS is a Silicon Valley software company whose offerings rely on advanced data science to significantly improve the operational performance of hospitals and clinics. Using LeanTaaS iQueue in conjunction with their existing EHR's, healthcare institutions are developing optimized schedules that are tailored to each site and can rapidly reduce patient wait times and operating costs while increasing patient access and satisfaction, care provider satisfaction, and asset utilization.

Latest Stories
Creating replica copies to tolerate a certain number of failures is easy, but very expensive at cloud-scale. Conventional RAID has lower overhead, but it is limited in the number of failures it can tolerate. And the management is like herding cats (overseeing capacity, rebuilds, migrations, and degraded performance). Download Slide Deck: ▸ Here In his general session at 18th Cloud Expo, Scott Cleland, Senior Director of Product Marketing for the HGST Cloud Infrastructure Business Unit, discusse...
Whether they’re located in a public, private, or hybrid cloud environment, cloud technologies are constantly evolving. While the innovation is exciting, the end mission of delivering business value and rapidly producing incremental product features is paramount. In his session at @DevOpsSummit at 19th Cloud Expo, Kiran Chitturi, CTO Architect at Sungard AS, will discuss DevOps culture, its evolution of frameworks and technologies, and how it is achieving maturity. He will also cover various st...
SYS-CON Events announced today that eCube Systems, a leading provider of middleware modernization, integration, and management solutions, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. eCube Systems offers a family of middleware evolution products and services that maximize return on technology investment by leveraging existing technical equity to meet evolving business needs. ...
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of So...
Digital innovation is the next big wave of business transformation based on digital technologies of which IoT and Big Data are key components, For example: Business boundary innovation is a challenge to excavate third-party business value using IoT and BigData, like Nest Business structure innovation may propose re-building business structure from scratch, as Uber does in the taxicab industry The social model innovation is also a big challenge to the new social architecture with the design fr...
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
Data is an unusual currency; it is not restricted by the same transactional limitations as money or people. In fact, the more that you leverage your data across multiple business use cases, the more valuable it becomes to the organization. And the same can be said about the organization’s analytics. In his session at 19th Cloud Expo, Bill Schmarzo, CTO for the Big Data Practice at EMC, will introduce a methodology for capturing, enriching and sharing data (and analytics) across the organizati...
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...
SYS-CON Events announced today that Bsquare has been named “Silver Sponsor” of SYS-CON's @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. For more than two decades, Bsquare has helped its customers extract business value from a broad array of physical assets by making them intelligent, connecting them, and using the data they generate to optimize business processes.
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
We’ve been doing it for years, decades for some. How many websites have you created accounts on? Your bank, your credit card companies, social media sites, hotels and travel sites, online shopping sites, and that’s just the start. We do it often without even thinking about it, quickly entering our personal information, our data, in a plethora of systems. Sometimes we’re not even aware of the information we are providing. It could be very personal information (think of the security questions you ...
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lea...
According to Forrester Research, every business will become either a digital predator or digital prey by 2020. To avoid demise, organizations must rapidly create new sources of value in their end-to-end customer experiences. True digital predators also must break down information and process silos and extend digital transformation initiatives to empower employees with the digital resources needed to win, serve, and retain customers.