Welcome!

News Feed Item

Health Catalyst Launches Open Source Machine Learning: healthcare.ai

First open source, machine learning repository specifically for healthcare enables industrywide collaboration to advance outcomes improvement through artificial intelligence

SALT LAKE CITY, Dec. 1, 2016 /PRNewswire/ -- Use of machine learning and predictive analytics to improve health outcomes has so far been limited to highly-trained data scientists, mostly in the nation's top academic medical centers.

www.healthcatalyst.com. " border="0" alt="Health Catalyst delivers a proven, Late-Binding(TM) Data Warehouse platform and analytic applications that actually work in today's transforming healthcare environment. Health Catalyst data warehouse platforms aggregate data utilized in population health and ACO projects in support of over 30 million unique patients. www.healthcatalyst.com. " align="middle" src="http://photos.prnewswire.com/prnvar/20140217/MM66628LOGO"/>

No longer. healthcare.ai is on a mission to make machine learning accessible to the thousands of healthcare professionals who possess little or no data science skills but who share an interest in using the technology to improve patient care. By making its central repository of proven machine learning algorithms available for free, healthcare.ai enables a large, diverse group of technical healthcare professionals to quickly use machine learning tools to build accurate models. The healthcare.ai site provides one central spot to download algorithms and tools, read documentation, request new features, submit questions, follow the blog, and contribute code.

healthcare.ai was started by Health Catalyst, a leading data warehousing, analytics and outcomes improvement company that is contributing ongoing support to the open source community. Health Catalyst has used healthcare.ai to build predictive models that drive its clients' outcomes improvement efforts and span across the company's product lines. Models include but are not limited to a predictive model for central line associated blood stream infection (CLABSI), readmission models for COPD and other chronic conditions, schedule optimization, and financial predictions such as patient propensity to pay.

"Machine learning and artificial intelligence are going to transform healthcare. We are seeing amazing results and yet we are barely getting started. We are applying it to the reduction of patient harm events, care management, hospital acquired infections, revenue cycle management, patient risk stratification, and more," said Dale Sanders, Executive Vice President of Health Catalyst. "With machine learning, the data is talking to us, exposing insights that we've never seen before with traditional business intelligence and analytics. By open sourcing healthcare.ai, we hope to facilitate industrywide collaboration and advance the adoption of machine learning, making it easy for healthcare organizations to learn from and enhance these tools together, without the need for a team of data scientists. All of us have seen what open source software has achieved in other industries and we want to be a part of that in healthcare."

How healthcare.ai works

healthcare.ai makes it easy to create predictive and pattern recognition models using a healthcare organization's own data—and is unlike any other machine learning tool in the industry. The open source repository features packages for two common languages in healthcare data science—R and Python. These packages are designed to streamline healthcare machine learning by simplifying the workflow of creating and deploying models, and delivering functionality specific to healthcare:

  • Pays attention to longitudinal questions
  • Offers an easy way to do risk-adjusted comparisons
  • Provides easy connections and deployment to databases

Both healthcare.ai packages provide an easy way to create models on a health system's own data. This includes linear and random forest models, ways to handle missing data, guidance on feature selection, proper performance metrics, and easy database connections.

"We believe that machine learning is too helpful and important to be handled solely by full-time data scientists," said Sanders. "The new tools in healthcare.ai enable BI developers, data architects, and SQL developers to create appropriate and accurate models with healthcare data, without hiring a data scientist. These tools will democratize machine learning in a realm that needs it most—because everyone benefits when healthcare is made safer, more efficient and effective. And, we are not just being altruistic here. By submitting our tools and algorithms to the open source community, we and our clients will benefit from the collective intelligence that exists beyond our team of data scientists."

Participation in healthcare.ai is simple.  Interested parties can visit the site, choose either the R or Python language, read the install instructions, and follow the examples – at no cost. There is no similar platform or environment for healthcare professionals who are seeking to expand their skills and the value of machine learning to their organization.

About healthcare.ai

healthcare.ai is the world's first repository of healthcare-focused open source machine learning software. In healthcare, everyone benefits from a more efficient system and better outcomes. healthcare.ai delivers the powerful, helpful, simple tools required to transform healthcare data into actionable insights that can be used to improve outcomes. Join the healthcare.ai community today and be a part of the movement to democratize machine learning in healthcare. http://healthcare.ai.

About Health Catalyst

Health Catalyst is a mission-driven data warehousing, analytics and outcomes-improvement company that helps healthcare organizations of all sizes perform the clinical, financial, and operational reporting and analysis needed for population health and accountable care. Our proven analytics platform helps improve quality, add efficiency and lower costs in support of more than 70 million patients for organizations ranging from the largest US health system to forward-thinking, small physician practices. For more information, visit https://www.healthcatalyst.com, and follow us on TwitterLinkedIn and Facebook.

Media Contact:
Todd Stein
Amendola Communications
916-346-4213
[email protected]

Logo - http://photos.prnewswire.com/prnh/20140217/MM66628LOGO

 

 

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/health-catalyst-launches-open-source-machine-learning-healthcareai-300370925.html

SOURCE Health Catalyst

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
"We are the public cloud providers. We are currently providing 50% of the resources they need for doing e-commerce business in China and we are hosting about 60% of mobile gaming in China," explained Yi Zheng, CPO and VP of Engineering at CDS Global Cloud, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at 20th Cloud Expo, Ed Featherston, director/senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Between 2005 and 2020, data volumes will grow by a factor of 300 – enough data to stack CDs from the earth to the moon 162 times. This has come to be known as the ‘big data’ phenomenon. Unfortunately, traditional approaches to handling, storing and analyzing data aren’t adequate at this scale: they’re too costly, slow and physically cumbersome to keep up. Fortunately, in response a new breed of technology has emerged that is cheaper, faster and more scalable. Yet, in meeting these new needs they...
"Once customers get a year into their IoT deployments, they start to realize that they may have been shortsighted in the ways they built out their deployment and the key thing I see a lot of people looking at is - how can I take equipment data, pull it back in an IoT solution and show it in a dashboard," stated Dave McCarthy, Director of Products at Bsquare Corporation, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
@DevOpsSummit taking place June 6-8, 2017 at Javits Center, New York City, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @DevOpsSummit at Cloud Expo New York Call for Papers is now open.
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effici...
"We are an all-flash array storage provider but our focus has been on VM-aware storage specifically for virtualized applications," stated Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
The cloud competition for database hosts is fierce. How do you evaluate a cloud provider for your database platform? In his session at 18th Cloud Expo, Chris Presley, a Solutions Architect at Pythian, gave users a checklist of considerations when choosing a provider. Chris Presley is a Solutions Architect at Pythian. He loves order – making him a premier Microsoft SQL Server expert. Not only has he programmed and administered SQL Server, but he has also shared his expertise and passion with b...
"IoT is going to be a huge industry with a lot of value for end users, for industries, for consumers, for manufacturers. How can we use cloud to effectively manage IoT applications," stated Ian Khan, Innovation & Marketing Manager at Solgeniakhela, in this SYS-CON.tv interview at @ThingsExpo, held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service. In his session at 19th Cloud Exp...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, provided an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data professionals...
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...