Welcome!

Related Topics: @ThingsExpo, Machine Learning , Artificial Intelligence

@ThingsExpo: Blog Feed Post

What Business Leaders Need to Know About Machine Learning | @ThingsExpo #AI #ML #IoT #M2M

Many of the algorithms that fall into the Machine Learning category are analytic algorithms that have been around for decades

What Tomorrow's Business Leaders Need to Know About Machine Learning

Sometimes I write a blog just to formulate and organize a point of view, and I think it’s time that I pull together the bounty of excellent information about Machine Learning. This is a topic with which business leaders must become comfortable, especially tomorrow’s business leaders (tip for my next semester University of San Francisco business students!). Machine learning is a key capability that will help organizations drive optimization and monetization opportunities, and there have been some recent developments that will place basic machine learning capabilities into the hands of the lines of business.

By the way, there is an absolute wealth of freely-available material on machine learning, so I’ve included a sources section at the end of this blog for folks who want more details on machine learning.

So strap’em on! Time to dive into the world of machine learning!

Machine Learning Basics
Much of what comprises “Machine Learning” is really not all new. Many of the algorithms that fall into the Machine Learning category are analytic algorithms that have been around for decades such as clustering, association rules and decisions trees. However, the detailed, granularity of the data, the wide variety of data sources and massive increase in computing power has re-invigorated many of these mature algorithms. Today, machine learning is being used for a variety of uses including:

  • Text translation, voice recognition and natural language processing (NLP). Machine Learning is the brains behind the continuously improving “conversations” with Apple Siri, Google Assistant, Microsoft Cortana and Amazon Alexa.

Facial, photo and image recognition. For example, the all-important question of “What is a Chihuahua puppy and what is a blueberry muffin?” can be addressed with a well-trained machine learning algorithm (see Figure 1).

Figure 1: Puppy versus blueberry muffin exercise

More applications of machine learning will be coming soon, including:

  • Cyber security
  • Insider trading
  • Money laundering
  • Personalized medicine
  • Personalized marketing
  • Fraud detection
  • Autonomous vehicles

So exactly what is machine learning?  Let’s start with a definition of machine learning:

Machine learning is a type of applied artificial intelligence (AI) that provides computers with the ability to gain knowledge without being explicitly programmed. Machine learning focuses on the development of computer programs that can change when exposed to new data.

Fundamentally, there are only two things that Machine Learning does:

  • Quantify existing relationships (quantify relationships from historical data and apply those relationships to new data sets).
  • Discover latent relationships (draw inferences buried in the data).

Machine Learning accomplishes these two tasks using either supervised or unsupervised learning algorithms. What’s the difference? Supervised learning includes the classification or categorization of the outcomes (e.g., fraudulent transaction, customer attrition, part failure, patient illness, purchase transaction, web click) in the observations. Unsupervised learning does not have the outcomes in the observations.

Supervised Learning
Supervised learning
algorithms make predictions based on a set of examples. For example, historical sales can be used to estimate the future prices. With supervised learning, you have an input variable that consists of labeled training data and a desired output variable. You use an algorithm to analyze the training data to learn the function that maps the input to the output. This inferred function maps new, unknown examples by generalizing from the training data to anticipate results in unseen situations.

  • Classification: when the objective field is categorical. For these problems, a Machine Learning algorithm is used to build a model that predicts a category (label or class) for a new example (instance). That is, it “classifies” new instances into a given set of categories (or discrete values). For example, “true or false”, “fraud or not fraud”, “high risk, low risk or medium risk”, etc. There can be hundreds of different categories.
  • Regression: when the objective field is numeric. For these problems, a Machine Learning algorithm is used to build a model that predicts a continuous value. That is, given the fields that define a new instance the model predicts a real number. For example, “the price of a house”, “the number of units sold for a product”, “the potential revenue of a lead”, “the number of hours until next system failure”, etc.

Both classification and regression problems can be solved using supervised Machine Learning techniques. They are called supervised in the sense that the values of the output variable have either been provided by a human expert (e.g., the patient had been diagnosed with diabetes or not) or by a deterministic automated process (e.g., customers who did not pay their fees in the last three months are labeled as “delinquent”). The objective field values along with the input fields need to be collected for each instance in a structured dataset that is used to train the model. The algorithms learn a predictive model that maps your input data to a predicted objective field value.

Unsupervised Learning
When performing unsupervised learning, the machine is presented with totally unlabeled data. It is asked to discover the intrinsic patterns that underlie the data, such as a clustering structure, a low-dimensional manifold, or a sparse tree and graph.

Clustering: Grouping a set of data examples so that examples in one group (or one cluster) are more similar (according to some criteria) than those in other groups. This is often used to segment the whole dataset into several groups. Analysis can be performed in each group to help users to find intrinsic patterns.

Source: http://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html

  • Association: If-then statements that uncover relationships within the data. An example of an association rule would be “If a customer buys a dozen eggs, he is 80% likely to also purchase milk.”

Source: https://www.slideshare.net/wanaezwani/apriori-and-eclat-algorithm-in-association-rule-mining

  • Neural Networks: Modeled after the human brain, a neural network consists of a large number of processors operating in parallel and arranged in tiers (feedforward). The first tier receives the raw input information and each successive tier receives the output from the preceding tier and performs further analysis. The last tier produces the output of the system. Neural networks are adaptive, which means they modify themselves as they learn from initial training and subsequent runs provide more information about the world.

Source: http://coderoncode.com/machine-learning/2017/03/26/neural-networks-without-a-phd-part2.html

  • Recurrent neural network (RNN) is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network that allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. This makes them applicable to tasks such as unsegmented connected handwriting recognition or speech recognition.

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Figure 2 provides a more detailed inventory of the different types of supervised and unsupervised machine learning algorithms.

Figure 2: Types of Machine Learning Algorithms
Source: http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/

Putting Machine Learning to Work
In a recent University of San Francisco project that we conducted with a local data science company, I was introduced to a product called BigML (BigML.com).  I was truly blown away by the relative simplicity of the tools (think “Tableau for Machine Learning”). I have no financial interest in BigML and suspect that as soon as this blog gets published, I will hear from other startups that are building something similar. But until I get those calls, I’m going to use BigML to showcase some Machine Learning basics.

BigML is free for the first 16 gigabytes of data and comes with some pre-loaded data sets and an extensive library of documentation, some of which I used for this blog. For this exercise, we’re going to use a data set that comes bundled with the BigML product: Titanic Survivors Data Set (see Figure 3).

Figure 3: Titanic Survivors Data Set

BigML provides a nice feature to allow the data scientist to explore and understand the data sets, and provides some basic statistical information (minimum, median, mean, maximum, standard deviation, kurtosis, skewness) about each of the variables in the data set.

BigML allows you to select from a variety of supervised and unsupervised models. I selected the supervised option (because I knew the classification of the passenger as survived or not survived) and got the decision tree in Figure 4 that predicts the likelihood of a Titanic passenger surviving given a wide variety of different variables (e.g., passenger age, class of travel, fare paid, in what city the passenger boarded).

Figure 4: Titanic Survivors Decision Tree

The resulting Decision Tree provides a series of “If-then” statements; each branch “yields a story” about the chances of survival.

Hint: you want to be young and you want to be rich to improve your odds of surviving the Titanic. That’s something that might be very useful if you ever find yourself on the Titanic.

To learn more about the “Predicting Titanic Survival Outcome” exercise, check out YouTube.

BigML provides a wide variety of machine learning algorithms with which one can play. Plus their documentation on each of the different machine learning algorithms is very impressive. I think these folks would make a fortune if they created an accompanying text book (and I sent them a note telling them such).

Machine Learning Summary
Both Supervised and Unsupervised learning algorithms will find relationships and occurrences in the data that might be relevant. The data scientist and the business stakeholder still must apply common sense to the findings; they must apply domain knowledge to ensure that not only are the uncovered relationships and insights “Strategic, Actionable and Material,” but they simply must apply common sense in order to prevent making statements of fact that just don’t make sense.

No amount of machine learning is going to replace good old common sense.

Appendix: Additional Machine Learning Sources

The post What tomorrow’s business leaders need to know about Machine Learning? appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice. As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide. Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata. Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications. Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Latest Stories
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Conference Guru has been named “Media Sponsor” of the 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great deals to gre...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develop...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
Companies are harnessing data in ways we once associated with science fiction. Analysts have access to a plethora of visualization and reporting tools, but considering the vast amount of data businesses collect and limitations of CPUs, end users are forced to design their structures and systems with limitations. Until now. As the cloud toolkit to analyze data has evolved, GPUs have stepped in to massively parallel SQL, visualization and machine learning.
"Evatronix provides design services to companies that need to integrate the IoT technology in their products but they don't necessarily have the expertise, knowledge and design team to do so," explained Adam Morawiec, VP of Business Development at Evatronix, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
"ZeroStack is a startup in Silicon Valley. We're solving a very interesting problem around bringing public cloud convenience with private cloud control for enterprises and mid-size companies," explained Kamesh Pemmaraju, VP of Product Management at ZeroStack, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...