Blog Feed Post

Autonomous to Smart: Importance of Artificial Intelligence

On Saturday February 11, 2017, my daughter and her friend were driving from a basketball game in Chico back to our home in Palo Alto. Unfortunately, due to several days of heavier than normal rains, the Oroville Dam spillway broke and flooded many of the roads between Chico and Palo Alto. My daughter’s smartphone mapping application wasn’t aware of the sudden danger, and proceeded to send her into the heart of the flooding (see Figure 1).

Figure 1: Oroville Dam Flooding on Saturday, February 11, 2017

Figure 1: Oroville Dam Flooding on Saturday, February 11, 2017

Fortunately, courtesy of some heads up “smart” driving, she was able to navigate the shallow flooding and avoid the more dangerous, deeper flooding (always helps to see cars stalled in the water before deciding to plow in).

This incident highlights two significant challenges with respect to the application of artificial intelligence in the world of the Internet of Things (IoT), edge analytics and creating “smart” devices:

  • Artificial Intelligence Challenge #1: How do the Artificial Intelligence algorithms handle the unexpected, such as flash flooding, terrorist attacks, earthquakes, tornadoes, police car chases, emergency vehicles, blown tires, a child chasing a ball onto the street, a pet darting into traffic, the Cubs winning the World Series, etc.?
  • Artificial Intelligence Challenge #2: The more complex the problem state, the more data storage (to retain known state history) and CPU processing power (to find the optimal or best solution) is required in the edge devices in order to create “smart.”

The challenge for any autonomous device (car, truck, drone, washer, wind turbine, pace maker) is how to manage challenge #1 within the computational and storage limitations of #2. What’s going to happen to your autonomous car when it’s driving down the highway and comes across a semi-trailer with the following graphic?

Whole Foods

And I’m not even sure where to begin with how an autonomous car might handle something like this (I hope your autonomous car hasn’t been watching any Transformer movies…)


We don’t need autonomous devices as much as we need “smart” devices; devices smart enough to do what my daughter did when faced with an unexpected situation requiring a real-time decision with only a limited amount of historical data and experience.

Moore’s Law: NOT to the Rescue

The physics of microprocessors and Moore’s law, which have helped us out of technology execution jams in the past, are not going to help address these two AI challenges. Historically, the rapidly declining storage costs and rapidly increasing CPU processing capabilities have allowed technologists to wait for the technology to advance in order to address the problem for them. Unfortunately, the growth in the sensor data and complexity of “smart” decisions at the edges is increasing faster than Moore’s Law can cover (see Figure 2).

IOT data is growing at a 61.5% compound annual growth, which is greater than the increases in CPU processing power. In fact, the rate of increase in CPU processing speeds is actually slowing, as highlighted in the article “Here’s How Intel Is Finally Getting Back on Track With Moore’s Law.”  To quote:

“Until a few years ago, Intel was able to reduce the scale of its chip designs every two years. But that cycle has been lengthening. Between the introduction of 65 nm and 45 nm chips, about 23 months passed. To get from 45 nm to 32 nm took about 27 months, 28 months to go down from there to 22 nm and 30 months to shrink to the current 14 nm process. And that’s where Intel has been stuck since September 2014” (and now scheduled to ship by the end of 2017).

So Moore’s Law isn’t going to bail us out. Storage and CPU technology advances are not going to keep up with the data and the edge computing complexity demands, so we’re going to have to learn to work smarter, which means that we’re going to need to dive into the world of Artificial Intelligence.

Role of AI in Transitioning from Autonomous to Smart

Artificial intelligence is comprised of different analytic algorithms that fall into three general categories: supervised, unsupervised, semi-supervised, and reinforcement learning:

  • Supervised Learning trains networks using examples where we have known outcomes (e.g., someone committed fraud, a customer attrited, a component failed, a patient got an illness, someone clicked to buy something, someone on the Titanic died). Supervised learning applies what has been learned (quantify existing relationships to the known outcomes) from the historical data to new data. Examples include facial recognition, text translation, license plate readers, or distinguishing photos of puppies from blueberry muffins.
  • Unsupervised Learning is for situations where you have a data set but no known outcomes. Unsupervised learning takes the input set and tries to find patterns in the data. Unsupervised learning uncovers new or latent relationships; it draws inferences from datasets. Examples include organizing customers into groups based upon purchase and/or web browsing behaviors (clustering) or finding outliers in the performance of your edge devices (anomaly detection).

We covered Supervised Learning and Unsupervised learning in this blog. Now we need to expand the conversation into the world of Reinforcement Learning, which seems like an ideal option for the smart devices at the edge challenge.

I will use the next blog to deep dive into how reinforcement learning might help address these two challenges, but will leave this blog with the following teaser about reinforcement learning (think of it like a movie trailer).

Reinforcement Learning is for situations where you don’t have data sets with explicit known outcomes, but you do have a reward function telling you whether you are getting closer to your goal. Trial and error search and delayed reward are two key features of reinforcement learning. The “Hotter or Colder” game is a good illustration of reinforcement learning; rather than getting a specific “right/wrong” answer, with each input point you get a delayed reaction and a hint of whether you’re heading in the right direction.

Watch this space!

The post Autonomous to Smart: Importance of Artificial Intelligence appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business”, is responsible for setting the strategy and defining the Big Data service line offerings and capabilities for the EMC Global Services organization. As part of Bill’s CTO charter, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He’s written several white papers, avid blogger and is a frequent speaker on the use of Big Data and advanced analytics to power organization’s key business initiatives. He also teaches the “Big Data MBA” at the University of San Francisco School of Management.

Bill has nearly three decades of experience in data warehousing, BI and analytics. Bill authored EMC’s Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements, and co-authored with Ralph Kimball a series of articles on analytic applications. Bill has served on The Data Warehouse Institute’s faculty as the head of the analytic applications curriculum.

Previously, Bill was the Vice President of Advertiser Analytics at Yahoo and the Vice President of Analytic Applications at Business Objects.

Latest Stories
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, will examine the regulations and provide insight on how it affects technology, challenges the established rules and will usher in new levels of diligence a...
Existing Big Data solutions are mainly focused on the discovery and analysis of data. The solutions are scalable and highly available but tedious when swapping in and swapping out occurs in disarray and thrashing takes place. The resolution for thrashing through machine learning algorithms and support nomenclature is through simple techniques. Organizations that have been collecting large customer data are increasingly seeing the need to use the data for swapping in and out and thrashing occurs ...
yperConvergence came to market with the objective of being simple, flexible and to help drive down operating expenses. It reduced the footprint by bundling the compute/storage/network into one box. This brought a new set of challenges as the HyperConverged vendors are very focused on their own proprietary building blocks. If you want to scale in a certain way, let’s say you identified a need for more storage and want to add a device that is not sold by the HyperConverged vendor, forget about it....
As many know, the first generation of Cloud Management Platform (CMP) solutions were designed for managing virtual infrastructure (IaaS) and traditional applications. But that’s no longer enough to satisfy evolving and complex business requirements. In his session at 21st Cloud Expo, Scott Davis, Embotics CTO, will explore how next-generation CMPs ensure organizations can manage cloud-native and microservice-based application architectures, while also facilitating agile DevOps methodology. He wi...
When you focus on a journey from up-close, you look at your own technical and cultural history and how you changed it for the benefit of the customer. This was our starting point: too many integration issues, 13 SWP days and very long cycles. It was evident that in this fast-paced industry we could no longer afford this reality. We needed something that would take us beyond reducing the development lifecycles, CI and Agile methodologies. We made a fundamental difference, even changed our culture...
In the enterprise today, connected IoT devices are everywhere – both inside and outside corporate environments. The need to identify, manage, control and secure a quickly growing web of connections and outside devices is making the already challenging task of security even more important, and onerous. In his session at @ThingsExpo, Rich Boyer, CISO and Chief Architect for Security at NTT i3, discussed new ways of thinking and the approaches needed to address the emerging challenges of security i...
Docker containers have brought great opportunities to shorten the deployment process through continuous integration and the delivery of applications and microservices. This applies equally to enterprise data centers as well as the cloud. In his session at 20th Cloud Expo, Jari Kolehmainen, founder and CTO of Kontena, discussed solutions and benefits of a deeply integrated deployment pipeline using technologies such as container management platforms, Docker containers, and the drone.io Cl tool. H...
Cloud adoption is often driven by a desire to increase efficiency, boost agility and save money. All too often, however, the reality involves unpredictable cost spikes and lack of oversight due to resource limitations. In his session at 20th Cloud Expo, Joe Kinsella, CTO and Founder of CloudHealth Technologies, tackled the question: “How do you build a fully optimized cloud?” He will examine: Why TCO is critical to achieving cloud success – and why attendees should be thinking holistically ab...
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, will provide a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to...
SYS-CON Events announced today that Datera, that offers a radically new data management architecture, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Datera is transforming the traditional datacenter model through modern cloud simplicity. The technology industry is at another major inflection point. The rise of mobile, the Internet of Things, data storage and Big...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, will discuss th...
An increasing number of companies are creating products that combine data with analytical capabilities. Running interactive queries on Big Data requires complex architectures to store and query data effectively, typically involving data streams, an choosing efficient file format/database and multiple independent systems that are tied together through custom-engineered pipelines. In his session at @BigDataExpo at @ThingsExpo, Tomer Levi, a senior software engineer at Intel’s Advanced Analytics ...
SYS-CON Events announced today that Datera will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Datera offers a radically new approach to data management, where innovative software makes data infrastructure invisible, elastic and able to perform at the highest level. It eliminates hardware lock-in and gives IT organizations the choice to source x86 server nodes, with business model option...
"Cloud computing is certainly changing how people consume storage, how they use it, and what they use it for. It's also making people rethink how they architect their environment," stated Brad Winett, Senior Technologist for DDN Storage, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, Cloud Expo and @ThingsExpo are two of the most important technology events of the year. Since its launch over eight years ago, Cloud Expo and @ThingsExpo have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, I provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading the...