Related Topics: @CloudExpo, Microservices Expo, Agile Computing

@CloudExpo: Blog Post

Improving Operational Efficiency in Healthcare | @CloudExpo #API #Cloud #Analytics

Combining lean thinking with predictive analytics and advanced optimization algorithms to drive improvements

Improving Operational Efficiency in Healthcare
By Mohan Giridharadas, Founder and CEO, LeanTaaS

The notion of improving operational efficiency is conspicuously absent from the healthcare debate - neither Obamacare nor the newly proposed GOP plan discusses the impact that a step-function improvement in efficiency could have on access to healthcare (through more capacity), quality of healthcare services (through reduced wait times for patients) or cost (through better utilization of scarce, expensive assets).

The opportunity of improving operational efficiency in health systems is plainly visible - a quick walk around any hospital or clinic will show the obvious symptoms: waiting rooms filled with people while the very piece of equipment for which they are waiting remains idle and patients spending 90 minutes or more to obtain a quick consultation or a check of their vital signs which collectively requires less than 10 minutes for a provider and/or their assistant to complete.

The traditional approaches of process improvement - using lean, Six Sigma or some other methodology - have run their course and, in most cases, only deliver modest improvement when considering the enormous resource burden they place on the organization and the months it takes for the impact to be tangible. We are at a pivotal point in time; the convergence of multiple enabling technologies makes it possible for us to drive a step-change improvement in operational efficiency that far exceeds anything that we could have imagined to be possible even a few short years ago. Specifically, this includes the massive digitization of patient data; the internet of things providing real-time data on the movements of patients, providers or assets; the emergence of machine learning and artificial intelligence; the democratization of predictive analytics from the ivory towers of academic institutions to organizations everywhere; the growth of massively scalable, secure cloud infrastructure; the ubiquity of smartphones and mobile apps; and the list goes on. We have seen this phenomenon in other contexts; Uber, Snapchat, Instagram and many other "unicorns" could not have existed had the smartphone not become prevalent.

Combining lean thinking with predictive analytics, machine learning, and advanced optimization algorithms and embedding it into scalable software products can drive dramatic improvements in the operational efficiencies of individual units in a hospital. Hospitals are a complex interconnected network of individual units - labs, imagining departments, pharmacies, infusion centers, operating rooms, etc. - each of which provides a specific service. In any interconnected network of units, it is much more effective to optimize the individual units before seeking to optimize the interconnections. Hence, UPS and FedEx will optimize their sorting hubs and warehouses as much as possible before worrying about their drivers driving faster.

This approach has yielded tremendous results. For example:

  • At ~60 infusion centers across the country, patient wait times during peak hours have been reduced by 30-55 percent and the effective capacity of the centers increased by 15-20 percent as a result of using models that can accurately predict the volume and mix of infusion treatments tailored to each infusion center for each day of the week. These centers have incorporated center-specific parameters (capacity, staff, etc.) into an optimization algorithm that created tailored appointment templates for each hour of each day of the week that consistently deliver against the core lean principle of "heijunka" - or level loading - which reduces the wait time for patients while balancing the workload for nurses.
  • Approximately 100 operating rooms and ~200 surgeons have been able to improve block and room utilization by 5-7 percentage points by predicting the need for block time for individual surgeons and service lines. Having accurately estimated the demand for block time, algorithms then identify the right supply of blocks by uncovering patterns of underutilized, abandoned or late-release blocks to give each surgeon and service line the right number of blocks of the right length on the right day of the week. Other artificial intelligence algorithms then automatically generate recommendations that encourage surgeons to release blocks that are not likely to be well utilized and even facilitate the "swap" with another surgeon using an OpenTable-like mobile application for block swaps. Blocks swapped in this way performed 12-15 percent better than blocks swapped using the conventional methods of schedulers sending out a flurry of phone calls, emails, faxes and voicemails to assign a newly available block to a surgeon or service line.
  • Predictive models from iQueue Labs have enabled the Emory Winship Cancer Institute to reduce the wait time in the lab from approximately one hour at peak times to less than 15 minutes at peak times. Emory has found that accurately predicting the volume and mix of patients (blood draw versus central line patients) at 15-minute increments for each day of the week makes it possible to correctly staff the number of phlebotomists and LPNs in order to virtually eliminate the wait time for patients. The result is not only a reduction in wait times in the lab; the improvement has also positively affected "downstream" services such as infusion treatments.

These are just three examples. Hospitals have many other opportunities for solving operational challenges that plague them on a daily basis. Other examples include both "supply side" problems (e.g., critical assets such as CT/MRI scanners, blood testing equipment, personnel, etc.) where asset utilization and/or availability are challenges as well as "demand side" problems (e.g., labs, clinics, etc.) where accommodating walk-in or scheduled appointments in a timely manner is a challenge.

A well-functioning air traffic control capability, along with an effective airport operations function, has been able to unlock an enormous capacity for flights out of major airports. For example, Atlanta airport in the mid-1980s only had a few hundred flights per day. Today, they have several thousand flights per day. This was accomplished without a change in the airspace around Atlanta and only a modest increase in the number of runways (from four to five) over this time period. Like health systems, they too have a very stringent requirement on safety - 99.9999 percent safety is simply not good enough since it would imply that society would accept a crash every few days in the United States.

A focus on using sophisticated "lean plus data science plus machine learning plus optimization plus scalable software" to unlock capacity and improve the throughput of the individual units within the hospital will ultimately create an operational "air traffic control" for hospitals - a centralized command and control capability that is truly predictive, learns continuously and uses advanced optimization algorithms and artificial intelligence to deliver prescriptive recommendations throughout the hospital system.


Mohan Giridharadas is an accomplished expert in lean methodologies. During his 18-year career at McKinsey & Company (where he was a senior partner/director for six years), he co-created the lean service operations practice and ran the North American lean manufacturing and service operations practices and the Asia-Pacific operations practice. He has helped numerous Fortune 500 companies drive operational efficiency with lean practices.

As the founder and CEO of LeanTaaS (a lean and predictive analytics company), Mohan has worked closely with dozens of leading healthcare institutions including Stanford Health Care, UCHealth, UCSF, Wake Forest and more. He holds a B.Tech from IIT Bombay, MS in Computer Science from Georgia Institute of Technology and an MBA from Stanford GSB. He is on the faculty of Continuing Education at Stanford University and UC Berkeley Haas School of Business and has been named by Becker's Hospital Review as one of the top entrepreneurs innovating in healthcare. For more information on LeanTaaS iQueue, please visit https://iqueue.com/ and follow the company on Twitter @LeanTaaS, Facebook at https://www.facebook.com/LeanTaaS and LinkedIn at https://www.linkedin.com/company/leantaas.

More Stories By LeanTaaS Blog

LeanTaaS is a Silicon Valley software company whose offerings rely on advanced data science to significantly improve the operational performance of hospitals and clinics. Using LeanTaaS iQueue in conjunction with their existing EHR's, healthcare institutions are developing optimized schedules that are tailored to each site and can rapidly reduce patient wait times and operating costs while increasing patient access and satisfaction, care provider satisfaction, and asset utilization.

Latest Stories
"We started a Master of Science in business analytics - that's the hot topic. We serve the business community around San Francisco so we educate the working professionals and this is where they all want to be," explained Judy Lee, Associate Professor and Department Chair at Golden Gate University, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
DXWorldEXPO LLC announced today that Dez Blanchfield joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Dez is a strategic leader in business and digital transformation with 25 years of experience in the IT and telecommunications industries developing strategies and implementing business initiatives. He has a breadth of expertise spanning technologies such as cloud computing, big data and analytics, cognitive computing, m...
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
DXWorldEXPO LLC announced today that Kevin Jackson joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Kevin L. Jackson is a globally recognized cloud computing expert and Founder/Author of the award winning "Cloud Musings" blog. Mr. Jackson has also been recognized as a "Top 100 Cybersecurity Influencer and Brand" by Onalytica (2015), a Huffington Post "Top 100 Cloud Computing Experts on Twitter" (2013) and a "Top 50 C...
Daniel Jones is CTO of EngineerBetter, helping enterprises deliver value faster. Previously he was an IT consultant, indie video games developer, head of web development in the finance sector, and an award-winning martial artist. Continuous Delivery makes it possible to exploit findings of cognitive psychology and neuroscience to increase the productivity and happiness of our teams.
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...