Blog Feed Post

Find Needles in Data Haystacks with Unsupervised Learning

There are valuable insights buried within your data, but they can be virtually impossible to find manually. Enter unsupervised cognitive learning.

Every time a data scientist spends hours immersed in data, wrangling and tweaking a mathematical code or script fragments, the dream of data science and machine learning bringing agility to your organization seems to retreat. Manual data science for industrial processes can be extremely counter-productive, especially when businesses embracing the IIoT are greatly emphasizing superior dexterity in operations. Any opportunity which can speed up delivery and output should be seized by every aspiring industrial manufacturer.

One of the biggest challenges for the industrial digital enterprise is extracting precise outcomes by channeling huge volumes of data into meaningful information, and then performing accurate analyses to streamline business processes. What the industry is looking for is a transformation from ‘sensor to insight to outcome.’ So how does this trickle down in the real industrial context?

To Find the Needle, Make Data Haystacks Smaller

The future of the IIoT involves billions of connected ‘things’ which will generate trillions of gigabytes of data, all of which will create a market of trillions of dollars. At the same time, the IIoT has created a massive upswing in data volume due to the increased granularity of the data being produced.

Today, data science and machine learning professionals are faced with a daunting challenge. Finding extremely rare anomalies is itself a hard task, and their rarity makes analysis quite difficult as well. Now consider the data context in which this is all taking place. Detection of these sporadic events in such humongous data sets by conducting manual in depth analysis and visualization of very large data volumes is the equivalent of looking for a needle in a massive haystack.

Further, deeper questions regarding the data itself need to be answered. These include checking if the data is relevant, if it is of sound quality and if the model produced by an algorithm translates from a mathematical relationship to a causal one.

To Fill the Data Gaps, Stretch beyond ‘Known Knowns’

To capture the significant gains from machine learning & the industrial IOT, companies must automate underlying processes that will help them scale with ease for ‘insights.’ This becomes even more complex as it is the unusual or unexpected data gaps that can be the actual trigger for an equipment failure. This is where traditional data science within the IIoT fails.

Faster to Market Using Unsupervised Learning

Most traditional industrial organizations rely on supervised learning, which is not only extremely limited in scope but is not scalable with the pace of industrial growth. Today’s complex industrial systems need a robust unsupervised learning format which can teach machines how to self-learn from past experience.

That’s where unsupervised learning combined with cognitive predictive maintenance comes into play. By combining these elements, the improved machine learning techniques can help companies achieve a far quicker time to market. This kind of approach is imperative to be competitive in a cognitive-first world.

This is not merely about agility, but converting this speed into valuable decision making using an unsupervised learning structure. This is precisely how our Cognitive Predictive Maintenance (CPdM) platform works to help save thousands of valuable hours, automating tasks done by data scientists to make them vastly more efficient. By getting predictive models ready in days using cognitive machine learning rather than through months and weeks of manual testing, companies can easily translate the real value of that agility into critical decision making. This generates savings in both time and resources, getting you to market faster and with greater precision.

We’re not discussing the distant future—the technology to do this is already here. Curious to learn more? You can find out more about how our CPdM solution can help you here.

Learn More about CPdM

Read the original blog entry...

More Stories By Progress Blog

Progress offers the leading platform for developing and deploying mission-critical, cognitive-first business applications powered by machine learning and predictive analytics.

Latest Stories
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
DXWorldEXPO LLC announced today that Dez Blanchfield joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Dez is a strategic leader in business and digital transformation with 25 years of experience in the IT and telecommunications industries developing strategies and implementing business initiatives. He has a breadth of expertise spanning technologies such as cloud computing, big data and analytics, cognitive computing, m...
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
DXWorldEXPO LLC announced today that Kevin Jackson joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Kevin L. Jackson is a globally recognized cloud computing expert and Founder/Author of the award winning "Cloud Musings" blog. Mr. Jackson has also been recognized as a "Top 100 Cybersecurity Influencer and Brand" by Onalytica (2015), a Huffington Post "Top 100 Cloud Computing Experts on Twitter" (2013) and a "Top 50 C...
There is a huge demand for responsive, real-time mobile and web experiences, but current architectural patterns do not easily accommodate applications that respond to events in real time. Common solutions using message queues or HTTP long-polling quickly lead to resiliency, scalability and development velocity challenges. In his session at 21st Cloud Expo, Ryland Degnan, a Senior Software Engineer on the Netflix Edge Platform team, will discuss how by leveraging a reactive stream-based protocol,...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Daniel Jones is CTO of EngineerBetter, helping enterprises deliver value faster. Previously he was an IT consultant, indie video games developer, head of web development in the finance sector, and an award-winning martial artist. Continuous Delivery makes it possible to exploit findings of cognitive psychology and neuroscience to increase the productivity and happiness of our teams.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...