Blog Feed Post

How to Put Machine Learning to Work for Your Business

What are the steps you should take to be ready to take advantage of Machine Learning, and why is now the time to do so? Learn the answers in part two of our series on demystifying Machine Learning. You can find the first part here.

Machine Learning is poised to take a massive leap in adoption in the near future, as most businesses have begun to develop Machine Learning strategies, with an increasing number in advanced stages. In our last post, we talked about what Machine Learning means, how machines really learn and how it can help you. But Machine Learning is not a new concept—it’s been around since the late 1950s—so why is now the time to adopt? And once you decide to adopt, how do you develop your strategy? These are crucial questions that need demystifying before a Machine Learning plan can be put in place.

What Has Changed—Why Machine Learning Now?

In the previous post in this series, we mentioned that processing the flood of data from modern devices can happily be automated by machines, which is the promise of Machine Learning. However, it’s only in recent years that this idea has moved from theory into practice. Two key advances in technology have enabled this change.

Data Generation Everywhere

Deriving patterns from data has always been possible, but most problems had a severe lack of data associated with them. If you didn’t know exactly how each cog in your industrial machine was being used, not just once but at all times, how accurate could any predictions about the whole device really be? Today there is a growing recognition in the value of the Industrial Internet of Things (IIoT)—for example, oil rigs are already packed with as many as 40,000 data tags.

This data is the raw material needed for machine learning, but by itself the value is limited. There’s too much data for a human to really comprehend. To make it actionable, it needs to be refined further.

Computational Power

The growth in computational power has been exponential. This summer, the world’s top supercomputer had a peak speed of about 125,500 Teraflops. To put that in context, that’s almost 54 times faster than the leader in 2010, over 39,000 times faster than at the turn of the millennium and nearly a million times more powerful than in 1993. It’s safe to say things are possible today that simply weren’t realistic even a few years ago, and enormous computational power is now available at a scale that is accessible to the SMB market as well as the major multinational enterprises.

Putting it All Together through Models

In parallel with raw computational power, complex new algorithms have been developed to allow data scientists to run models using all available data. Previously models had to be generalized to simplify the the analytics process, but machine comprehension can now ingest 100% of the data generated by every asset or person. The result is a far higher degree of accuracy than could be achieved with human analysis alone.

While it’s obvious that increasing prediction accuracy is a generally good goal, the impact of even small gains in accuracy can be deceptively powerful. It could revolutionize manufacturing through not only predicting failure for machinery and avoiding costly downtime, but also by impacting warranty claims, risk mitigation, part harmonization and cost-benefit analyses. Armed with this predictive knowledge, manufacturers can better manage recalls, which can cost automakers over a million dollars a day. According to McKinsey, manufacturing alone can save $630 billion a year by 2025 with predictive maintenance.

Put Machine Learning to Work for You

We’ve now covered the basics of how machine learning works, and why the time is right for adoption. However, a crucial question remains—how do you actually implement these changes? While there will be changes to the data scientist lifecycle, from a business perspective, you do not need to be an expert in math to determine the best way to leverage Machine Learning for your organization.

The New Data Scientist Lifecycle

Currently data scientists are tasked with manually creating models used to predict problems. They attempt to identify patterns in historical data that indicate past failures, and then apply this model to current machine data looking for matching patterns. Unfortunately, our research shows that in many scenarios, only 20% of failures are replicated, while the remaining 80% are random. Identifying only 20% of failures is a recipe for future problems.

That is why our Cognitive Predictive Maintenance approach models normal state. Instead of identifying past failure states, we model normal state and then we compare current machine data and identify anomalies. This allows organizations to identify a much higher level of potential problems, leading to highly accurate predictions. The platform constantly tunes the model with the latest data to ensure that changes to the operating environment don’t degrade the quality of the predictions. This process is automated so that data scientists are freed from tedious steps and can spend more time making informed decisions.

The Business Case

As a business leader, it’s not necessary to understand every algorithmic nuance to see how predictive analytics can be applied to your organization. What you need to understand is how your business objectives can be met with analytics.

There are several concrete steps you can take to make sure you’re prepared. If you’re reading this, you’re already doing the first one, which is to educate yourself on the basics of the technology and its business value. Once you have that baseline of understanding, it’s time to implement it in your organization.

  1. Evaluate Needs: Where can predictions help you optimize your business? What products or services could you deliver more effectively based on early warning data? Where can you save the most money, or generate the most yield? What are the gaps you need to fill?
  2. Gather Data: Without data, you won’t have anything to feed into the platform. Make sure you have the tools to produce, gather and store data in key areas, and that you are actively doing so.
  3. Review Solutions: What solutions suits you best? Do you have a relatively simple need that can be supported by a packaged analytical service? Or do you need a comprehensive platform that supports the development and deployment of individualized models? Ensure that the solution aligns with your resources—if you don’t have a large team of data scientists, then automation will be key.

At Progress, we pride ourselves on delivering everything you need to develop the business applications of the future. Our cognitive-first solution makes it easy to build your app at every level, from UX to data connectivity to cognitive intelligence as a service, with first-class support at every step. Whether you need a full stack for an end-to-end application, or have an existing product to enhance, we’re here to help. 

Read the original blog entry...

More Stories By Progress Blog

Progress offers the leading platform for developing and deploying mission-critical, cognitive-first business applications powered by machine learning and predictive analytics.

Latest Stories
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, will discuss how from store operations...
SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
SYS-CON Events announced today that Ryobi Systems will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ryobi Systems Co., Ltd., as an information service company, specialized in business support for local governments and medical industry. We are challenging to achive the precision farming with AI. For more information, visit http:...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, will discuss how by using...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
Transforming cloud-based data into a reportable format can be a very expensive, time-intensive and complex operation. As a SaaS platform with more than 30 million global users, Cornerstone OnDemand’s challenge was to create a scalable solution that would improve the time it took customers to access their user data. Our Real-Time Data Warehouse (RTDW) process vastly reduced data time-to-availability from 24 hours to just 10 minutes. In his session at 21st Cloud Expo, Mark Goldin, Chief Technolo...
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
SYS-CON Events announced today that CAST Software will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CAST was founded more than 25 years ago to make the invisible visible. Built around the idea that even the best analytics on the market still leave blind spots for technical teams looking to deliver better software and prevent outages, CAST provides the software intelligence that matter ...
SYS-CON Events announced today that Daiya Industry will exhibit at the Japanese Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ruby Development Inc. builds new services in short period of time and provides a continuous support of those services based on Ruby on Rails. For more information, please visit https://github.com/RubyDevInc.
When it comes to cloud computing, the ability to turn massive amounts of compute cores on and off on demand sounds attractive to IT staff, who need to manage peaks and valleys in user activity. With cloud bursting, the majority of the data can stay on premises while tapping into compute from public cloud providers, reducing risk and minimizing need to move large files. In his session at 18th Cloud Expo, Scott Jeschonek, Director of Product Management at Avere Systems, discussed the IT and busine...
Is advanced scheduling in Kubernetes achievable? Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, will answer these questions and demonstrate techniques for implementing advanced scheduling. For example, using spot instances ...
As businesses evolve, they need technology that is simple to help them succeed today and flexible enough to help them build for tomorrow. Chrome is fit for the workplace of the future — providing a secure, consistent user experience across a range of devices that can be used anywhere. In her session at 21st Cloud Expo, Vidya Nagarajan, a Senior Product Manager at Google, will take a look at various options as to how ChromeOS can be leveraged to interact with people on the devices, and formats th...
First generation hyperconverged solutions have taken the data center by storm, rapidly proliferating in pockets everywhere to provide further consolidation of floor space and workloads. These first generation solutions are not without challenges, however. In his session at 21st Cloud Expo, Wes Talbert, a Principal Architect and results-driven enterprise sales leader at NetApp, will discuss how the HCI solution of tomorrow will integrate with the public cloud to deliver a quality hybrid cloud e...
SYS-CON Events announced today that Yuasa System will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Yuasa System is introducing a multi-purpose endurance testing system for flexible displays, OLED devices, flexible substrates, flat cables, and films in smartphones, wearables, automobiles, and healthcare.