Welcome!

Blog Feed Post

AI Meets AI: The Key to Actually Implementing AI

With AI use case scenarios becoming more complex, the actual implementation of AI has also grown more challenging. However, a new way of delivering AI may be on the horizon.

An unprecedented amount of progress was made with AI and machine learning in 2017, as numerous companies deployed these technologies in real-world applications. This trend is projected to hold true through the near future, with some analysts like Gartner predicting that AI technologies will be in every new software product by 2020. From healthcare diagnosis to predictive maintenance for machines to conversational chatbots, there is no question that AI is quickly becoming a fundamental requirement for modern businesses.

However, despite the market buzz, many companies are still stumped by the prospect of deriving actual business value from the use of AI. In fact, the introduction of AI to actual products and solutions remains one of the leading sticking points for businesses, with many left asking, “How do I actually implement an AI solution?”

The Growing Complexity of AI Application

As AI goes from a “nice to have” to a “need to have,” it’s also evolving in terms of complexity. Companies need more than just simple, standardized AI services that do image or text recognition—they need complex predictive scenarios that are highly specific to their operations and customized for their business needs.

For example, take a scenario that uses time series data to generate business insights, such as predictive maintenance for the Industrial Internet of Things (IIoT) or customer churn analysis for a customer experience organization. These scenarios can’t be supported by simply calling a generic service with a few specific parameters and getting a result. Getting accurate and actionable results in these predictive scenarios requires a lot of data science work, with data being used over time to iteratively train the models and improve the accuracy and quality of the output. Additionally, businesses are being challenged to engineer new features, run and test many different models and determine the right mix of models to provide the most accurate result—and that’s just to determine what needs to be implemented in a production environment.

Moreover, businesses need to realize that AI is no longer the exclusive domain of data scientists and the engineers that help prepare the data. The situation is not unlike how digital transformation has branched out from being an IT-driven initiative to a company-wide effort. Organizations must move beyond a siloed AI approach that divides the analytics team and the app development team. App developers need to become more knowledgeable about the data science lifecycle and app designers need to think about how predictive insights can drive the application experience.

To be successful, organizations must identify an approach that enables them to easily put models into production in a language that is appropriate for runtime—without rewriting the analytical model. Organizations need to not only optimize their initial models but also feed data and events back to the production model so that it can be continuously improved upon.

This may seem like a big, complicated process, but it’s key to the actual implementation of AI—the AI of AI, if you will. AI will become unreachable to your organization if you cannot do this.

The New World of AI

So how can organizations effectively implement AI in a way that enables them to address complex predictive scenarios with limited data science resources? And how do organizations achieve success without retraining their entire development team?

The truth of the matter is that it can’t be done by simply creating a narrowly defined, one-size-fits-all approach that will get you results with only a few parameters. It requires a more complex implementation to be insightful, actionable and valuable to the business.

Take, for example, an IIoT predictive maintenance application that analyzes three months of time series data from sensors on hundreds or thousands of machines and returns the results automatically. This isn’t a simple predictive result set that is returned, but a complete set of detected anomalies that occurred over that time, with prioritized results to eliminate the alert storms that previously made it impossible to operationalize the results. These prioritized results are served up via a work order on a mobile app to the appropriate regional field service personnel, who are then able to perform the necessary maintenance to maximize machine performance. It’s a complex process where the machine learning is automated and feature engineering is done in an unsupervised fashion. The provided results analyze individual sensor data, machine-level data and machine population data and are packaged up in format that enables the business to take action.

Welcome to the new world of AI implementation. While it’s a very new concept, the best market definition of this process is currently “anomaly detection.” But not all solutions take the same approach and not all solutions deliver predictions that lead to better business outcomes.What you are about to see is a fundamental shift in how machine learning capabilities are delivered—and we aren’t just talking deployment in the cloud versus on-premise. We are talking about a shift from delivering data science tools that make the data scientists more effective to data science results that eliminate the need for the data scientist to have these tools in the first place. In this brave new world, data scientists would be able to spend their time analyzing and improving the results, instead of wasting their time on non-mission-critical tasks.

The only thing that is required is that the data is provided in a time series format Otherwise, you simply upload the data to the cloud (but on-premise options will exist too) and the automated AI does the rest, with accurate results returned within days.

Soon you can move from dreams of AI to actual implementation!

Read the original blog entry...

More Stories By Progress Blog

Progress offers the leading platform for developing and deploying mission-critical, cognitive-first business applications powered by machine learning and predictive analytics.

Latest Stories
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, provided a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to oper...
Sometimes I write a blog just to formulate and organize a point of view, and I think it’s time that I pull together the bounty of excellent information about Machine Learning. This is a topic with which business leaders must become comfortable, especially tomorrow’s business leaders (tip for my next semester University of San Francisco business students!). Machine learning is a key capability that will help organizations drive optimization and monetization opportunities, and there have been some...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the p...
"Storpool does only block-level storage so we do one thing extremely well. The growth in data is what drives the move to software-defined technologies in general and software-defined storage," explained Boyan Ivanov, CEO and co-founder at StorPool, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
ChatOps is an emerging topic that has led to the wide availability of integrations between group chat and various other tools/platforms. Currently, HipChat is an extremely powerful collaboration platform due to the various ChatOps integrations that are available. However, DevOps automation can involve orchestration and complex workflows. In his session at @DevOpsSummit at 20th Cloud Expo, Himanshu Chhetri, CTO at Addteq, will cover practical examples and use cases such as self-provisioning infra...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was jo...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, provided some practical insights on what, how and why when implementing "software-defined" in the datacent...
Blockchain. A day doesn’t seem to go by without seeing articles and discussions about the technology. According to PwC executive Seamus Cushley, approximately $1.4B has been invested in blockchain just last year. In Gartner’s recent hype cycle for emerging technologies, blockchain is approaching the peak. It is considered by Gartner as one of the ‘Key platform-enabling technologies to track.’ While there is a lot of ‘hype vs reality’ discussions going on, there is no arguing that blockchain is b...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the cloud has become a defining competitive edge. Companies that fail to successfully adapt risk failure. The media, of course, continues to extol the virtues of the cloud, including how easy it is to get there. Migrating...
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud host...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.